Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of West University of Timisoara - Mathematics and Computer Science

The Journal of West University of Timisoara

Editor-in-Chief: Sasu, Bogdan

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.01

Open Access
Online
ISSN
1841-3307
See all formats and pricing
More options …

On a Group of Linear-Bivariate Polynomials that Generate Quasigroups over the Ring ℤn

T. G. Jaiyéọlá / E. Ilojide
Published Online: 2013-01-15 | DOI: https://doi.org/10.2478/v10324-012-0014-3

Abstract

In this study, some linear-bivariate polynomials P(x, y) = a + bx + cy that generate quasigroups over the ring Zn are studied. By defining a suitable binary operation * on the set Hp(Zn) of all linear-bivariate polynomials of the form Pf (x,y) = fi(a, b, c) + f2(a,b,c)x + f3(a,b,c)y where f1, f2, f3 : Zn x Zn x Zn-> Zn, it is proved that (Hp(Zn), *) is a monoid. Necessary and sufficient conditions for it to be a group and abelian group are established. If PP(Zn) is the set of the linear-bivariate polynomials that generate the quasigroups that are the parastro- phes of the quasigroup generated by P(x, y), then it is shown that (Pp (Zn), *) < (Hp(Zn), *). The group PP (Zn) is found to be isomorphic to the symmetric group S3 and to SPp(Zn) < S6. A Bol loop of order 36 is constructed using the group PP(Zn).

: Keywords Quasigroups; parastrophes; linear-bivariate polynomials.

  • 1. R. H. Bruck, A survey of binary systems, Springer-Verlag, Berlin-Gottingen- Heidelberg, 1966Google Scholar

  • 2. O. Chein, H. O. Pflugfelder, and J. D. H. Smith, Quasigroups and loops : Theory and applications, Heldermann Verlag, 1990Google Scholar

  • 3. J. Dene and A. D. Keedwell, Latin squares and their applications, English University press Lts, 1974Google Scholar

  • 4. E. G. Goodaire, E. Jespers, and C. P. Milies, Alternative loop rings, NHMS (184), Elsevier, 1996Google Scholar

  • 5. T. G. Jaiyeola, A study of new concepts in smarandache quasigroups and loops, ProQuest Information and Learning(ILQ), Ann Arbor, USA, 2009Google Scholar

  • 6. T. G. Jaiyeola, Some necessary and sufficient conditions for parastrophic invariance in the associative law, Fasciculi Mathematici, 40, (2008), 25-35.Google Scholar

  • 7. H. O. Pflugfelder, Quasigroups and loops : Introduction, Berlin, 1990Google Scholar

  • 8. R. L. Rivest, Permutation polynomials Modulo 2w, Finite Fields and Their Applications 7, (2001), 287-292.Web of ScienceGoogle Scholar

  • 9. L. V. Sabinin, Smooth quasigroups and loops, Kluver Academic Publishers, Dordrecht, 1999Google Scholar

  • 10. J. D. H. Smith, An introduction to quasigroups and their representations, Taylor and Francis Group, LLC., 2007.Google Scholar

  • 11. A. R. T. Solarin and B. L. Sharma, On the construction of Bol loops, Scientific Annals of ”Al.I. Cuza” University of Iasi, 27, No. 1, (1981), 13-17.Google Scholar

  • 12. G. R. Vadiraja Bhatta and B. R. Shankar, Permutation Polynomials modulo n, n = 2w and Latin Squares, International J. Math. Combin. 2, (2009), 58-65.Google Scholar

  • 13. W. B. Vasantha Kandasamy, Smarandache loops, Department of Mathematics, Indian Institute of Technology, Madras, India, 2002Google Scholar

  • Google Scholar

About the article

Published Online: 2013-01-15

Published in Print: 2012-12-01


Citation Information: Annals of West University of Timisoara - Mathematics, ISSN (Print) 1841-3293, DOI: https://doi.org/10.2478/v10324-012-0014-3.

Export Citation

This content is open access.

Comments (1)

Please log in or register to comment.
Log in
  • Nice work

    posted by: Temitope Jaiyeola on 2013-09-12 03:57 AM (America/New_York)