Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of West University of Timisoara - Physics

The Journal of West University of Timisoara

1 Issue per year

Open Access
Online
ISSN
1224-9718
See all formats and pricing
More options …

Complex Impedance of Manganese Ferrite Powders Obtained by Two Different Methods

I. Mălăescu
  • West University of Timisoara, Faculty of Physics, Bd.V. Pârvan, No. 4, 300223 Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antoanetta Lungu
  • West University of Timisoara, Faculty of Physics, Bd.V. Parvan, No. 4, 300223 Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. N. Marin
  • West University of Timisoara, Faculty of Physics, Bd.V. Parvan, No. 4, 300223 Timisoara, Romania,
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paulina Vlăzan
  • National Institutes for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paula Sfirloagă
  • National Institutes for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/awutp-2015-0203

Abstract

Two samples of manganese ferrite powder were obtained by the calcination method (sample A) and hydrothermal method (sample B). The crystal structure of the samples has been determined using X-ray diffraction analysis (XRD). The results shown that the sample A has three phases (FeMnO3, Mn2O3 and Fe2O3) and the prevailing phase is FeMnO3 with perovskite structure and the sample B has only a single phase (MnFe2O4).

The grain morphology was analyzed by scanning electron microscopy (SEM) and the compositional analysis was done by energy dispersive spectroscopy (EDAX).

Measurements of the frequency (f) and temperature (T) dependent complex impedance, Z(f, T) = Z’(f, T) - i Z’’(f, T) of the samples over the frequency range 20 Hz - 2 MHz, at various temperature values from 300C to 1100C are presented. From these measurements, we have shown that the temperature dependence of the relaxation time is of Arhenius type, which suggests that the conduction process is thermally activated. The values obtained for the activation energy Ea, are: 16meV (sample A) and 147.65meV (sample B).

Applying complex impedance spectroscopy technique, the obtained results shows the shape of a single semicircle at each temperature over the measurement range, meaning that the electrical process obeys to a single relaxation mechanism. The impedance and related parameters of the electrical equivalent circuit depend on the temperature and the microstructure of samples. The resistive and capacitive properties of the investigated samples are dominated with the conduction and relaxation processes associated with the grain boundaries mechanism..

Keywords : Manganese ferrite; hydrothermal synthesis; Complex impedance

References

  • [1] E. C. Snelling (editor), Soft Ferrites. Properties and Applications, 2nd (1988) London: ButterworthGoogle Scholar

  • [2] S. Sam and A. S. Nesaraj, Int. J. Appl. Sci. Eng., 223 (2011) 223-239Google Scholar

  • [3] M.A.Ahmed, N.Okasha, S. I. El-Dek, Nanotechnology, 19 (2008) 065-603;Google Scholar

  • [4] Han Aijun, Liao Juanjuan, Ye Mingquan, Li Yan and Peng Xinhua, Chinese Journal of Chemical Engineering, 19(6) (2011) 1047-1051;CrossrefGoogle Scholar

  • [5] Y.M.Z. Ahmed, Ceramics International, 36 (2010) 969-977Google Scholar

  • [6] M.M. Rashad, Materials Science & Engineering B, 127, 2-3 (2006) 123-129 |Google Scholar

  • [7] S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, Journal of Alloys and Compounds, 555 (2013) 330-334Google Scholar

  • [8] A. Lungu, I. Malaescu, C. N. Marin, P. Vlazan, P. Sfirloaga, Physica B: Condensed Matter, 462 (2015) 80-85.Google Scholar

  • [9] J. T. S. Irvine, D. C. Sinclair, A. R. West, Adv. Mater., 2-3 (2004)132-138Google Scholar

  • [10] Khalid Mujasam Batoo, Physica B, 406 (2011) 382-387Google Scholar

  • [11] Khalid Mujasam Batoo, Shalendra Kumar, Chan Gyan Lee, Alimuddin, Journal of Alloys and Compounds, 480 (2009) 596-602.Google Scholar

  • [12] M. H. Abdullah, A. N. Yusoff, Journal of Materials Science, 32 (1997) 5817Ð5823Google Scholar

  • [13] S. Khadhraoui, A.Triki, S.Hcini, S.Zemni, M.Oumezzine, Journal of Magnetism and Magnetic Materials, 371(2014) 69-76Google Scholar

  • [14] Khalid Mujasam Batoo, Shalendra Kumar, Chan Gyu Lee, Alimuddin, Current Applied Physics, 9 (2009) 1397-1406Google Scholar

  • [15] J. Plocharski, W.Wieczorek, Solid State Ion. 28-30 (1988)979.Google Scholar

  • [16] M. M. Costa, G. F. M. Pires Jr., A. S. B. Sombra, J. Mater. Chem. Phys,.123 (2010) 35.Google Scholar

  • [17] J. Hu, H. Qin, J. Magn. Magn. Mater., 231(2001)L1.Google Scholar

  • [18] B. K. P. Scaife, Principles of dielectrics, Clarendon Press - Oxford, 1998Google Scholar

  • [19] D. K. Pradhan, B. K. Samantary, R. N. P. Chaudhary, A. K. Thakur, Mater. Sci. Eng. B 116(2005)7.Google Scholar

  • [20] H. F. Cheng, J. Appl. Phys., 56 (1984) 1831-1837. Google Scholar

About the article

Received: 2015-09-23

Accepted: 2015-11-26

Published Online: 2015-12-30

Published in Print: 2015-12-01


Citation Information: Annals of West University of Timisoara - Physics, Volume 58, Issue 1, Pages 14–26, ISSN (Online) 1224-9718, DOI: https://doi.org/10.1515/awutp-2015-0203.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in