Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bio-Algorithms and Med-Systems

Editor-in-Chief: Roterman-Konieczna , Irena

CiteScore 2018: 0.29

SCImago Journal Rank (SJR) 2018: 0.129
Source Normalized Impact per Paper (SNIP) 2018: 0.324

ICV 2018: 120.80

See all formats and pricing
More options …

Depth map color constancy

Marc Ebner
  • Corresponding author
  • Institut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald, Greifswald, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johannes Hansen
  • Institut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald, Greifswald, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-29 | DOI: https://doi.org/10.1515/bams-2013-0152


A human observer is able to determine the color of objects independent of the light illuminating these objects. This ability is known as color constancy. In the first stages of visual information processing, data are analyzed with respect to wavelength composition, orientation, motion, and depth. With this contribution, we investigate whether depth information can help in estimating the color of the objects. We assume that local space average color is computed in V4 through resistively coupled neurons to estimate the color of the illuminant. We show how this computational model can be extended to incorporate depth information.

Keywords: color constancy; color perception; depth map; Kinect; space average color


  • 1.

    McCann JJ. Simultaneous contrast and color constancy: signatures of human image processing. In: Davis S, editor. Color perception: philosophical, psychological, artistic, and computational perspectives. Volume 9. Vancouver studies in cognitive science. Oxford: Oxford University Press, 2000: 87–101.Google Scholar

  • 2.

    McCann JJ, McKee SP, Taylor TH. Quantitative studies in retinex theory. Vis Res 1976;16:445–58.CrossrefGoogle Scholar

  • 3.

    Zeki S. A vision of the brain. Oxford: Blackwell Science, 1993.Google Scholar

  • 4.

    Ebner M. Color constancy. England: John Wiley & Sons, 2007.Google Scholar

  • 5.

    Brainard DH, Freeman WT. Bayesian color constancy. J Opt Soc Am A 1997;14:1393–411.CrossrefGoogle Scholar

  • 6.

    Finlayson GD, Hordley SD. Color constancy at a pixel. J Opt Soc Am A 2001;18:253–64.CrossrefGoogle Scholar

  • 7.

    Finlayson GD, Hordley S, Pubel PM. Color by correlation: a simple, unifying framework for color constancy. IEEE Trans Pattern Anal Machine Intell 2001;23:1209–21.CrossrefGoogle Scholar

  • 8.

    Forsyth DA. A novel algorithm for color constancy. Int J Comput Vis 1990;5:5–36.CrossrefGoogle Scholar

  • 9.

    Funt BV, Drew MS, Ho J. Color constancy from mutual reflection. Int J Comput Vis 1991;6:5–24.CrossrefGoogle Scholar

  • 10.

    Geusebroek JM, van den Boomgaard R, Smeulders AW, Geerts H. Color invariance. IEEE Trans Pattern Anal Machine Intell 2001;23:1338–50.CrossrefGoogle Scholar

  • 11.

    Funt B, Cardei V, Barnard K. Learning color constancy. In: Proceedings of the IS&T/SID Fourth Color Imaging Conference, Scottsdale, 1996:58–60.Google Scholar

  • 12.

    Hurlbert AC, Poggio TA. Synthesizing a color algorithm from examples. Science 1988;239:482–3.PubMedCrossrefGoogle Scholar

  • 13.

    Cardei VC, Funt B. Committee-based color constancy. In: Proceedings of the IS&T/SID Seventh Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, AZ, 1999:311–3.Google Scholar

  • 14.

    Lu R, Gijsenij A, Gevers T, Nedović V, Xu D, Geusebroek JM. Color constancy using 3d scene geometry. In: Proceedings of the 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009:1749–56.Google Scholar

  • 15.

    Barnard K, Cardei V, Funt B. A comparison of computational color constancy algorithms – part I: methodology and experiments with synthesized data. IEEE Trans Image Process 2002;11:972–84.PubMedCrossrefGoogle Scholar

  • 16.

    Barnard K, Martin L, Coath A, Funt B. A comparison of computational color constancy algorithms – part II: experiments with image data. IEEE Trans Image Process 2002;11:985–96.PubMedCrossrefGoogle Scholar

  • 17.

    Funt B, Barnard K, Martin L. Is machine colour constancy good enough? In: Burkhardt H, Neumann B, editors. Fifth European Conference on Computer Vision (ECCV ‘98), Freiburg, Germany. Berlin: Springer-Verlag, 1998:445–59.Google Scholar

  • 18.

    Buchsbaum G. A spatial processor model for object colour perception. J Franklin Inst 1980;310:337–50.Google Scholar

  • 19.

    van de Weijer J, Gevers T, Gijsenij A. Edge-based color constancy. IEEE Trans Image Process 2007;16:2207–14.CrossrefGoogle Scholar

  • 20.

    Barnard K, Finlayson G, Funt B. Color constancy for scenes with varying illumination. Comput Vis Image Understand 1997;65:311–21.CrossrefGoogle Scholar

  • 21.

    Land EH, McCann JJ. Lightness and retinex theory. J Opt Soc Am 1971;61:1–11.CrossrefPubMedGoogle Scholar

  • 22.

    Blake A. Boundary conditions for lightness computation in Mondrian world. Comput Vis Graphics Image Process 1985;32:314–27.Google Scholar

  • 23.

    Frankle JA, McCann JJ. Method and apparatus for lightness imaging. US Patent 4,384,336, 1983.Google Scholar

  • 24.

    Funt B, Ciurea F, McCann J. Retinex in MATLAB. J Electron Imaging 2004;13:48–57.CrossrefGoogle Scholar

  • 25.

    Horn BK. Determining lightness from an image. Comput Graphics Image Process 1974;3:277–99.CrossrefGoogle Scholar

  • 26.

    Moore A, Allman J, Goodman RM. A real-time neural system for color constancy. IEEE Trans Neural Networks 1991;2:237–47.CrossrefGoogle Scholar

  • 27.

    Land EH. An alternative technique for the computation of the designator in the retinex theory of color vision. Proc Natl Acad Sci USA 1986;83:3078–80.Google Scholar

  • 28.

    Gijsenij A, Lu R, Gevers T. Color constancy for multiple light sources. IEEE Trans Image Process 2012;21:697–707.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 29.

    Ebner M. Color constancy based on local space average color. Machine Vis Appl J 2009;20:283–301.Web of ScienceGoogle Scholar

  • 30.

    Ebner M. A computational model for color perception. Bio-Algorithms Med-Syst 2012;8:387–415.Google Scholar

  • 31.

    Ebner M. Estimating the color of the illuminant using anisotropic diffusion. In: Kropatsch WG, Kampel M, Hanbury A, editors. Proceedings of the 12th International Conference on Computer Analysis of Images and Patterns, August 27–29, 2007, Vienna, Austria. Berlin: Springer-Verlag, 2007:441–9.Google Scholar

  • 32.

    Horn BK. Robot vision. Cambridge, MA: MIT Press, 1986.Google Scholar

  • 33.

    Jain R, Kasturi R, Schunck BG. Machine vision. New York: McGraw-Hill, 1995.Google Scholar

  • 34.

    Szeliski R. Computer vision. Berlin: Springer, 2010.Google Scholar

  • 35.

    Microsoft Corporation. Programming with the Kinect for Windows SDK. Redmond, WA: Microsoft Corporation, 2011.Google Scholar

  • 36.

    Ebner M. A parallel algorithm for color constancy. J Parallel Distrib Comput 2004;64:79–88.CrossrefGoogle Scholar

  • 37.

    Ebner M. How does the brain arrive at a color constant descriptor? In: Mele F, Ramella G, Santillo S, Ventriglia F, editors. Proceedings of the 2nd International Symposium on Brain, Vision and Artificial Intelligence, October 10–12, 2007, Naples, Italy. Berlin: Springer, 2007:84–93.Google Scholar

  • 38.

    Tovée MJ. An introduction to the visual system. Cambridge: Cambridge University Press, 1996.Google Scholar

  • 39.

    Gegenfurtner KR. Cortical mechanisms of colour vision. Nat Rev Neurosci 2003;4:563–72.PubMedCrossrefGoogle Scholar

  • 40.

    Dartnall HJ, Bowmaker JK, Mollon JD. Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc R Soc Lond B 1983;220:115–30.CrossrefGoogle Scholar

  • 41.

    Dowling JE. The retina: an approachable part of the brain. Cambridge, MA: The Belknap Press of Harvard University Press, 1987.Google Scholar

  • 42.

    Livingstone MS, Hubel DH. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 1984;4:309–56.PubMedGoogle Scholar

  • 43.

    Herault J. A model of colour processing in the retina of vertebrates: from photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing 1996;12:113–29.CrossrefGoogle Scholar

  • 44.

    Kofler M. Inbetriebahme und Untersuchung des Kinect Sensors. Master’s thesis. Österreich: FH Oberösterreich, 2011.Google Scholar

  • 45.

    Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, et al. Kinectfusion: real-time dense surface mapping and tracking. In: Proceedings of the 10th IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE, 2011:127–36.Google Scholar

  • 46.

    Gabel M, Gilad-Bachrach R, Renshaw E, Schuster A. Full body gait analysis with Kinect. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA. New York: IEEE, 2012:1964–7.Google Scholar

  • 47.

    Andersen MR, Jensen T, Lisouski P, Mortensen AK, Hansen MK, Gregersen T, et al. Kinect depth sensor evaluation for computer vision applications. Tech Rep ECE-TR-6. Denmark: Aarhus University, 2012.Google Scholar

About the article

Corresponding author: Marc Ebner, Institut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487 Greifswald, Germany, Phone: +49-3834-86-4646, Fax: +49-3834-86-4640, E-mail:

Received: 2013-09-09

Accepted: 2013-10-18

Published Online: 2013-11-29

Published in Print: 2013-12-01

Citation Information: Bio-Algorithms and Med-Systems, Volume 9, Issue 4, Pages 167–177, ISSN (Online) 1896-530X, ISSN (Print) 1895-9091, DOI: https://doi.org/10.1515/bams-2013-0152.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shao-Bing Gao, Ming Zhang, and Yong-Jie Li
Optics Express, 2019, Volume 27, Number 18, Page 25611

Comments (0)

Please log in or register to comment.
Log in