Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bio-Algorithms and Med-Systems

Editor-in-Chief: Roterman-Konieczna , Irena

4 Issues per year

CiteScore 2017: 0.43

SCImago Journal Rank (SJR) 2017: 0.160
Source Normalized Impact per Paper (SNIP) 2017: 0.223

See all formats and pricing
More options …

Smotifs as structural local descriptors of supersecondary elements: classification, completeness and applications

Jaume Bonet
  • Structural Bioinformatics Group (GRIB), Department of Experimental and Life Sciences, University Pompeu Fabra, Barcelona, Catalonia, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andras Fiser
  • Albert Einstein College of Medicine, Department of Systems and Computational Biology, Bronx, NY, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Baldo Oliva
  • Structural Bioinformatics Group (GRIB), Department of Experimental and Life Sciences, University Pompeu Fabra, Barcelona, Catalonia, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Narcis Fernandez-Fuentes
  • Corresponding author
  • Structural Bioinformatics Group (GRIB), Department of Experimental and Life Sciences, University Pompeu Fabra, Barcelona, Catalonia, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-27 | DOI: https://doi.org/10.1515/bams-2014-0016


Protein structures are made up of periodic and aperiodic structural elements (i.e., α-helices, β-strands and loops). Despite the apparent lack of regular structure, loops have specific conformations and play a central role in the folding, dynamics, and function of proteins. In this article, we reviewed our previous works in the study of protein loops as local supersecondary structural motifs or Smotifs. We reexamined our works about the structural classification of loops (ArchDB) and its application to loop structure prediction (ArchPRED), including the assessment of the limits of knowledge-based loop structure prediction methods. We finalized this article by focusing on the modular nature of proteins and how the concept of Smotifs provides a convenient and practical approach to decompose proteins into strings of concatenated Smotifs and how can this be used in computational protein design and protein structure prediction.

Keywords: loop structure prediction; protein loops; protein secondary structures; protein structure design; protein structure prediction; protein supersecondary structures


  • 1.

    Leszczynski JF, Rose GD. Loops in globular proteins: a novel category of secondary structure. Science 1986;234:849–55.Google Scholar

  • 2.

    Krishna MM, Lin Y, Rumbley JN, Walter Englander S. Cooperative omega loops in cytochrome c: role in folding and function. J Mol Biol 2003;331:29–36.Google Scholar

  • 3.

    Collinet B, Garcia P, Minard P, Desmadril M. Role of loops in the folding and stability of yeast phosphoglycerate kinase. Eur J Biochem 2001;268:5107–18.Google Scholar

  • 4.

    Linhananta A, Zhou H, Zhou Y. The dual role of a loop with loop contact distance in folding and domain swapping. Protein Sci 2002;11:1695–701.Google Scholar

  • 5.

    Fersht AR. Transition-state structure as unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc Natl Acad Sci 2000;15:1525–9.CrossrefGoogle Scholar

  • 6.

    Ulfer R, Kirschner K. The importance of surface loops for stabilizing an eightfold beta alpha protein. Protein Sci 1992; 1:31–45.Google Scholar

  • 7.

    Batori V, Koide A, Koide S. Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain. Protein Eng 2002;15: 1015–20.CrossrefGoogle Scholar

  • 8.

    Kumar S, Nussinov R. How do thermophilic proteins deal with heat? Cell Mol Life Sci 2001;58:1216–33.CrossrefGoogle Scholar

  • 9.

    Zhou HX. Loops, linkage, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins. Acc Chem Res 2004;37:123–30.CrossrefGoogle Scholar

  • 10.

    Hoedemaeker FJ, van Eijsden RR, Diaz CL, de Pater BS, Kijne JW. Destabilization of pea lectin by substitution of a single amino acid in a surface loop. Plant Mol Biol 1993;22: 1039–46.CrossrefGoogle Scholar

  • 11.

    Fetrow JS. Omega loops: nonregular secondary structure significant in protein function and stability. FASEB 1995;9: 708–17.Google Scholar

  • 12.

    Saraste M, Sibbald PR, Wittinghofer A. The P-loop – a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 1990;15:430–4.CrossrefGoogle Scholar

  • 13.

    Chen LT, Liang WX, Chen S, Li RK, Tan JL, Xu PF, et al. Functional and molecular features of the calmodulin-interacting protein IQCG required for haematopoiesis in zebrafish. Nat Commun 2014;5:3811.Google Scholar

  • 14.

    Kawasaki H, Kretsinger RH. Calcium-binding proteins 1: EF-hands. Protein Profile 1995;2:297–490.Google Scholar

  • 15.

    Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, et al. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 1989;245:616–21.Google Scholar

  • 16.

    Johnson LN, Lowe ED, Noble ME, Owen DJ. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett 1998;430:1–11.Google Scholar

  • 17.

    Gunasekaran K, Ma B, Nussinov R. Triggering loops and enzyme function: identification of loops that trigger and modulate movements. J Mol Biol 2003;332:143–59.Google Scholar

  • 18.

    Zgiby S, Plater AR, Bates MA, Thomson GJ, Berry A. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-biphosphate aldolase from Escherichia coli. J Mol Biol 2002;315:131–40.Google Scholar

  • 19.

    Adams JA. Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model? Biochemistry 2003;42:601–7.CrossrefGoogle Scholar

  • 20.

    Johnson LN, Noble ME, Owen DJ. Active and inactive protein kinases: structural basis for regulation. Cell 1996;85:149–58.CrossrefGoogle Scholar

  • 21.

    Joseph D, Petsko GA, Karplus M. Anatomy of a conformational change: hinged “lid” motion of the triosephosphate isomerase loop. Science 1990;249:1425–8.Google Scholar

  • 22.

    Sinev MA, Sineva EV, Ittah V, Haas E. Domain closure in adenylate kinase. Biochemistry 1996;35:6425–37.CrossrefGoogle Scholar

  • 23.

    Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W. Structure of mitochondrial creatine kinase. Nature 1996;381:341–5.Google Scholar

  • 24.

    Feng W, Shi Y, Li M, Zhang M. Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding. Nat Struct Biol 2003;10:972–8.CrossrefGoogle Scholar

  • 25.

    Planas-Iglesias J, Bonet J, Garcia-Garcia J, Marin-Lopez MA, Feliu E, Oliva B. Understanding protein-protein interactions using local structural features. J Mol Biol 2013;425:1210–24.Google Scholar

  • 26.

    Tainer JA, Thayer MM, Cunningham RP. DNA repair proteins. Curr Opin Struct Biol 1995;5:20–6.CrossrefGoogle Scholar

  • 27.

    Kim ST, Shirai H, Nakajima N, Higo J, Nakamura H. Enhanced conformational diversity search of CDR-H3 in antibodies: role of the first CDR-H3 residue. Proteins 1999;37:683–96.CrossrefGoogle Scholar

  • 28.

    Bernstein LS, Ramineni S, Hague C, Cladman W, Chidiac P, Levey AI, et al. RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11alpha signaling. J Biol Chem 2004;279:21248–56.Google Scholar

  • 29.

    Zomot E, Kanner BI. The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. J Biol Chem 2003;278:42950–8.Google Scholar

  • 30.

    Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Classification of common functional loops of kinase super-families. Proteins 2004;56:539–55.CrossrefGoogle Scholar

  • 31.

    Espadaler J, Fernandez-Fuentes N, Hermoso A, Querol E, Aviles FX, Sternberg MJ, et al. ArchDB: automated protein loop classification as a tool for structural genomics. Nucleic Acids Res 2004;32:D185–8.CrossrefGoogle Scholar

  • 32.

    Hermoso A, Espadaler J, Enrique Querol E, Aviles FX, Sternberg MJ, Oliva B, et al. Including functional annotations and extending the collection of structural classifications of protein loops (ArchDB). Bioinformatics Biol Insights 2009;1:77–90.Google Scholar

  • 33.

    Oliva B, Bates PA, Querol E, Aviles FX, Sternberg MJ. Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. J Mol Biol 1998;279:1193.Google Scholar

  • 34.

    Oliva B, Bates PA, Querol E, Aviles FX, Sternberg MJ. An automated classification of the structure of protein loops. J Mol Biol 1997;266:814.Google Scholar

  • 35.

    Bonet J, Planas-Iglesias J, Garcia-Garcia J, Marin-Lopez MA, Fernandez-Fuentes N, Oliva B. ArchDB 2014: structural classification of loops in proteins. Nucleic Acids Res 2014;42:D315–9.CrossrefGoogle Scholar

  • 36.

    Fernandez-Fuentes N, Querol E, Aviles FX, Sternberg MJ, Oliva B. Prediction of the conformation and geometry of loops in globular proteins: testing ArchDB, a structural classification of loops. Proteins 2005;60:746–57.CrossrefGoogle Scholar

  • 37.

    Fernandez-Fuentes N, Oliva B, Fiser A. A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res 2006;34:2085–97.CrossrefGoogle Scholar

  • 38.

    Fernandez-Fuentes N, Fiser A. Saturating representation of loop conformational fragments in structure databanks. BMC Struct Biol 2006;6:15.CrossrefGoogle Scholar

  • 39.

    Fernandez-Fuentes N, Dybas JM, Fiser A. Structural characteristics of novel protein folds. PLoS Comput Biol 2010;6:e1000750.CrossrefGoogle Scholar

  • 40.

    Menon V, Vallat BK, Dybas JM, Fiser A. Modeling proteins using a supersecondary structure library and NMR chemical shift information. Structure 2013;21:891–9.CrossrefGoogle Scholar

  • 41.

    Bonet J, Segura J, Planas-Iglesias J, Oliva B, Fernandez-Fuentes N. Frag‘r’Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bioinformatics 2014;30:1935–6.CrossrefGoogle Scholar

  • 42.

    Venkatachalam CM. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 1968;6:1425–36.CrossrefGoogle Scholar

  • 43.

    Richardson JS. The anatomy and taxonomy of protein structure. Adv Protein Chem 1981;34:167–339.CrossrefGoogle Scholar

  • 44.

    Wilmot CM, Thornton J. Analysis and prediction of the different types of beta-turns in proteins. J Mol Biol 1988;203:221–32.Google Scholar

  • 45.

    Hutchinson EG, Thornton JM. A revised set of potentials for beta-turn formation in proteins. Protein Sci 1994;3:2207–16.CrossrefGoogle Scholar

  • 46.

    Matthews BW. The gamma turn. Evidence for a new folded conformation in proteins. Macromolecules 1972;5:818–9.CrossrefGoogle Scholar

  • 47.

    Milner-White E, Ross BM, Ismail R, Belhadj-Mostefa K, Poet R. One type of gamma-turn, rather than the other gives rise to chain-reversal in proteins. J Mol Biol 1988;204:777–82.CrossrefGoogle Scholar

  • 48.

    Rose GD, Gierasch LM, Smith JA. Turns in peptides and proteins. Adv Protein Chem 1985;37:1–109.CrossrefGoogle Scholar

  • 49.

    Sibanda BL, Thornton JM. Conformation of beta hairpins in protein structures: classification and diversity in homologous structures. Methods Enzymol 1991;202:59.Google Scholar

  • 50.

    Sibanda BL, Blundell TL, Thornton JM. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol 1989;206:759.Google Scholar

  • 51.

    Milner-White EJ, Poet R. Four classes of beta-hairpins in proteins. Biochem J 1986;240:289–92.Google Scholar

  • 52.

    Efimov AV. Structure of coiled beta-beta-hairpins and beta-beta-corners. FEBS Lett 1991;284:288–92.Google Scholar

  • 53.

    Edwards M, Sternberg MJ, Thornton J. Structural and sequence patterns in the loops of beta alpha beta units. Prot Eng 1987;1:173–81.CrossrefGoogle Scholar

  • 54.

    Rice PA, Goldman A, Steitz TA. A helix-turn-strand structural motif common in alpha-beta proteins. Prot Struct Funct Genet 1990;8:343.Google Scholar

  • 55.

    Donate LE, Rufino SD, Canard LH, Blundell TL. Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: a database for modeling and prediction. Protein Sci 1996;5:2600.CrossrefGoogle Scholar

  • 56.

    Wintjens RT, Rooman MJ, Wodak SJ. Automatic classification and analysis of alpha alpha-turn motifs in proteins. J Mol Biol 1996;255:235–53.Google Scholar

  • 57.

    Regad L, Martin J, Nuel G, Camproux AC. Mining protein loops using a structural alphabet and statistical exceptionality. BMC Bioinformatics 2010;11:75.CrossrefGoogle Scholar

  • 58.

    Shen Y, Picord G, Guyon F, Tuffery P. Detecting protein candidate fragments using a structural alphabet profile comparison approach. PLoS ONE 2013;8:e80493.CrossrefGoogle Scholar

  • 59.

    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235–42.CrossrefGoogle Scholar

  • 60.

    Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577–637.CrossrefGoogle Scholar

  • 61.

    Everitt B. Cluster analysis. Chapter 3. Heineman Educational Books Ltd., London, 1974.Google Scholar

  • 62.

    Gene Ontology Consortium. The Gene Ontology: enhancements for 2011. Nucleic Acids Res 2012;40:D559–64.Google Scholar

  • 63.

    Bairoch A. The ENZYME database in 2000. Nucleic Acids Res 2000;28:304–5.CrossrefGoogle Scholar

  • 64.

    Hubbard TJ, Murzin AG, Brenner SE, Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res 1997;25:236.CrossrefGoogle Scholar

  • 65.

    Espadaler J, Querol E, Aviles FX, Oliva B. Identification of function-associated loop motifs and application to protein function prediction. Bioinformatics 2006;22:2237–43.CrossrefGoogle Scholar

  • 66.

    Van Dongen S. Graph clustering via a discrete uncoupling process. SIAM J Matrix Anal Appl 2008;30:121–41.CrossrefGoogle Scholar

  • 67.

    Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001;294:93–6.Google Scholar

  • 68.

    Fiser A, Feig M, Brooks CL III, Sali A. Evolution and physics in comparative protein structure modeling. Acc Chem Res 2002;35:413.CrossrefGoogle Scholar

  • 69.

    Pieper U, Eswar N, Braberg H, Madhusudhan MS, Davis FP, Stuart AC, et al. MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 2004;32:D217.CrossrefGoogle Scholar

  • 70.

    Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, Shen BW, et al. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nat Biotechnol 2012;30:190–2.CrossrefGoogle Scholar

  • 71.

    Fernandez-Fuentes N, Fiser A. Modeling loops in protein structures. In: Introduction to protein structure prediction: methods and algorithms. Wiley Series on Bioinformatics. New Jersey: John Wiley & Sons, Inc., 2010:279–299.Google Scholar

  • 72.

    Greer J. Comparative model-building of the mammalian serine proteases. J Mol Biol 1981;153:1027.Google Scholar

  • 73.

    Jones TA, Thirup S. Using known substructures in protein model building and crystallography. EMBO J 1986;5:819.Google Scholar

  • 74.

    Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, et al. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr 1998;54:1078–84.CrossrefGoogle Scholar

  • 75.

    Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 1987;196:901.Google Scholar

  • 76.

    Kwasigroch JM, Chomilier J, Mornon JP. A global taxonomy of loops in globular proteins. J Mol Biol 1996;259:855–72.Google Scholar

  • 77.

    Wojcik J, Mornon JP, Chomilier J. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification. J Mol Biol 1999;255:235–53.Google Scholar

  • 78.

    Martin AC, Thornton JM. Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol 1996;263:800.Google Scholar

  • 79.

    Burke DF, Deane CM, Blundell TL. Browsing the SLoop database of structurally classified loops connecting elements of protein secondary structure. Bioinformatics 2000;16:513.CrossrefGoogle Scholar

  • 80.

    Michalsky E, Goede A, Preissner R. Loops in Proteins (LIP) – a comprehensive loop database for homology modelling. Protein Eng 2003;16:979.CrossrefGoogle Scholar

  • 81.

    Heuser P, Wohlfahrt G, Schomburg D. Efficient methods for filtering and ranking fragments for the prediction of structurally variable regions in proteins. Proteins 2004;54:583–95.Google Scholar

  • 82.

    Choi Y, Deane CM. FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 2010;78:1431–40.Google Scholar

  • 83.

    Fernandez-Fuentes N, Zhai J, Fiser A. ArchPRED: a template based loop structure prediction server. Nucleic Acids Res 2006;34:W173–6.CrossrefGoogle Scholar

  • 84.

    Peng HP, Yang AS. Modeling protein loops with knowledge-based prediction of sequence-structure alignment. Bioinformatics 2007;23:2836–42.CrossrefGoogle Scholar

  • 85.

    Ko J, Lee D, Park H, Coutsias EA, Lee J, Seok C. The FALC-Loop web server for protein loop modeling. Nucleic Acids Res 2011;39:W210–4.CrossrefGoogle Scholar

  • 86.

    Fidelis K, Stern PS, Bacon D, Moult J. Comparison of systematic search and database methods for constructing segments of protein structure. Protein Eng 1994;7:953.CrossrefGoogle Scholar

  • 87.

    Lessel U, Schomburg D. Creation and characterization of a new, non-redundant fragment data bank. Protein Eng 1997;10:659.CrossrefGoogle Scholar

  • 88.

    Chance MR, Fiser A, Sali A, Pieper U, Eswar N, Xu G, et al. High-throughput computational and experimental techniques in structural genomics. Genome Res 2004;14:2145.CrossrefGoogle Scholar

  • 89.

    Khafizov K, Madrid-Aliste C, Almo SC, Fiser A. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative. Proc Natl Acad Sci USA 2014;111:3733–8.CrossrefGoogle Scholar

  • 90.

    Du P, Andrec M, Levy RM. Have we seen all structures corresponding to short protein fragments in the Protein Data Bank? An update. Protein Eng 2003;16:407–14.CrossrefGoogle Scholar

  • 91.

    Mezei M. Chameleon sequences in the PDB. Protein Eng 1998;11:411.CrossrefGoogle Scholar

  • 92.

    Kabsch W, Sander C. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc Natl Acad Sci USA 1984;81:1075.CrossrefGoogle Scholar

  • 93.

    Fernandez-Fuentes N, Fiser A. A modular perspective of protein structures: application to fragment based loop modeling. Methods Mol Biol 2013;932:141–58.Google Scholar

  • 94.

    Kolaskar AS, Kulkarni-Kale U. Sequence alignment approach to pick up conformationally similar protein fragments. J Mol Biol 1992;223:1053–61.Google Scholar

  • 95.

    Shortle D. Composites of local structure propensities: evidence for local encoding of long-range structure. Protein Sci 2002;11:18–26.CrossrefGoogle Scholar

  • 96.

    Fiser A, Sali A. ModLoop: automated modeling of loops in protein structures. Bioinformatics 2003;19:2500.CrossrefGoogle Scholar

  • 97.

    Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779.Google Scholar

  • 98.

    Khare SD, Fleishman SJ. Emerging themes in the computational design of novel enzymes and protein-protein interfaces. FEBS Lett 2013;587:1147–54.Google Scholar

  • 99.

    Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN. Computational enzyme design. Angew Chem 2013;52:5700–25.CrossrefGoogle Scholar

  • 100.

    Marvin JS, Hellinga HW. Conversion of a maltose receptor into a zinc biosensor by computational design. Proc Natl Acad Sci USA 2001;98:4955–60.CrossrefGoogle Scholar

  • 101.

    Murphy PM, Bolduc JM, Gallaher JL, Stoddard BL, Baker D. Alteration of enzyme specificity by computational loop remodeling and design. Proc Natl Acad Sci USA 2009;106:9215–20.CrossrefGoogle Scholar

  • 102.

    Hu X, Wang H, Ke H, Kuhlman B. High-resolution design of a protein loop. Proc Natl Acad Sci USA 2007;104:17668–73.CrossrefGoogle Scholar

  • 103.

    Hocker B. Design of proteins from smaller fragments-learning from evolution. Curr Opin Struct Biol 2014;27C:56–62.CrossrefGoogle Scholar

  • 104.

    Yadid I, Tawfik DS. Reconstruction of functional beta-propeller lectins via homo-oligomeric assembly of shorter fragments. J Mol Biol 2007;365:10–7.Google Scholar

  • 105.

    Shanmugaratnam S, Eisenbeis S, Hocker B. A highly stable protein chimera built from fragments of different folds. Protein Eng Des Sel 2012;25:699–703.CrossrefGoogle Scholar

  • 106.

    Moult J, Hubbard T, Fidelis K, Pedersen JT. Critical assessment of methods of protein structure prediction (CASP): round III. Proteins 1999;Suppl 3:2–6.CrossrefGoogle Scholar

  • 107.

    Claren J, Malisi C, Hocker B, Sterner R. Establishing wild-type levels of catalytic activity on natural and artificial (beta alpha)8-barrel protein scaffolds. Proc Natl Acad Sci USA 2009;106:3704–9.CrossrefGoogle Scholar

  • 108.

    Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, et al. De novo computational design of retro-aldol enzymes. Science 2008;319:1387–91.Google Scholar

  • 109.

    Wang L, Althoff EA, Bolduc J, Jiang L, Moody J, Lassila JK, et al. Structural analyses of covalent enzyme-substrate analog complexes reveal strengths and limitations of de novo enzyme design. J Mol Biol 2012;415:615–25.Google Scholar

  • 110.

    Saab-Rincon G, Olvera L, Olvera M, Rudino-Pinera E, Benites E, Soberon X, et al. Evolutionary walk between (beta/alpha)(8) barrels: catalytic migration from triosephosphate isomerase to thiamin phosphate synthase. J Mol Biol 2012;416:255–70.Google Scholar

  • 111.

    Azoitei ML, Correia BE, Ban YE, Carrico C, Kalyuzhniy O, Chen L, et al. Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 2011;334:373–6.Google Scholar

  • 112.

    Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 2011;487:545–74.Google Scholar

  • 113.

    Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, et al. Predicting protein structures with a multiplayer online game. Nature 2010;466:756–60.Google Scholar

  • 114.

    Fiser A. Protein structure modeling in the proteomics era. Expert Rev Proteomics 2004;1:97–110.CrossrefGoogle Scholar

  • 115.

    Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 1999;13:289–302.CrossrefGoogle Scholar

  • 116.

    Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 2009;44:213–23.CrossrefGoogle Scholar

  • 117.

    Bonneau R, Strauss CE, Rohl CA, Chivian D, Bradley P, Malmstrom L, et al. De novo prediction of three-dimensional structures for major protein families. J Mol Biol 2002;322:65–78.Google Scholar

  • 118.

    Bowers PM, Strauss CE, Baker D. De novo protein structure determination using sparse NMR data. J Biomol NMR 2000;18:311.CrossrefGoogle Scholar

  • 119.

    Gong H, Shen Y, Rose GD. Building native protein conformation from NMR backbone chemical shifts using Monte Carlo fragment assembly. Protein Sci 2007;16:1515–21.CrossrefGoogle Scholar

  • 120.

    Shen Y, Vernon R, Baker D, Bax A. De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 2009;43:63–78.CrossrefGoogle Scholar

  • 121.

    Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, et al. Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 2008;105:4685–90.CrossrefGoogle Scholar

  • 122.

    Cavalli A, Salvatella X, Dobson CM, Vendruscolo M. Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 2007;104:9615–20.CrossrefGoogle Scholar

  • 123.

    Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M. Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 2010;18:923–33.CrossrefGoogle Scholar

  • 124.

    Robustelli P, Cavalli A, Dobson CM, Vendruscolo M, Salvatella X. Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology. J Phys Chem B 2009;113:7890–6.CrossrefGoogle Scholar

  • 125.

    Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M. Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 2009;131:13894–5.Google Scholar

  • 126.

    Han B, Liu YF, Ginzinger SW, Wishart DS. SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 2011;50:43–57.CrossrefGoogle Scholar

  • 127.

    Shen Y, Bax A. SPARTA plus: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 2010;48:13–22.CrossrefGoogle Scholar

  • 128.

    Meiler J. PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 2003;26:25–37.CrossrefGoogle Scholar

  • 129.

    Berjanskii M, Tang P, Liang J, Cruz JA, Zhou J, Zhou Y, et al. GeNMR: a web server for rapid NMR-based protein structure determination. Nucleic Acids Res 2009;37:W670–7.CrossrefGoogle Scholar

  • 130.

    Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G. CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 2008;36:W496–502.CrossrefGoogle Scholar

  • 131.

    Rykunov D, Fiser A. New statistical potential for quality assessment of protein models and a survey of energy functions. BMC Bioinformatics 2010;11:128.CrossrefGoogle Scholar

  • 132.

    Rykunov D, Steinberger E, Madrid-Aliste CJ, Fiser A. Improved scoring function for comparative modeling using the M4T method. J Struct Funct Genomics 2009;10:95–9.CrossrefGoogle Scholar

  • 133.

    Rykunov D, Fiser A. Effects of amino acid composition, finite size of proteins, and sparse statistics on distance-dependent statistical pair potentials. Proteins 2007;67:559–68.CrossrefGoogle Scholar

  • 134.

    Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins 1999;35:133.CrossrefGoogle Scholar

  • 135.

    Morozov AV, Kortemme T. Potential functions for hydrogen bonds in protein structure prediction and design. Adv Protein Chem 2005;72:1–38.CrossrefGoogle Scholar

  • 136.

    Fiser A, Sali A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 2003;374:461.Google Scholar

  • 137.

    Zemla A. LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 2003;31:3370–4.Google Scholar

  • 138.

    Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic Acids Res 2008;36:D402–8.Google Scholar

  • 139.

    Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, et al. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 2008;36:D419–25.Google Scholar

  • 140.

    Remmert M, Biegert A, Hauser A, Soding J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 2012;9:173–5.Google Scholar

  • 141.

    Altschul SF, Koonin EV. Iterated profile searches with PSI-BLAST – a tool for discovery in protein databases. Trends Biochem Sci 1998;23:444.CrossrefGoogle Scholar

  • 142.

    Baber JL, Libutti D, Levens D, Tjandra N. High precision solution structure of the C-terminal KH domain of heterogeneous nuclear ribonucleoprotein K, a c-myc transcription factor. J Mol Biol 1999;289:949–62.Google Scholar

  • 143.

    Koga N, Tatsumi-Koga R, Liu GH, Xiao R, Acton TB, Montelione GT, et al. Principles for designing ideal protein structures. Nature 2012;491:222.Google Scholar

About the article

Corresponding author: Narcis Fernandez-Fuentes, Structural Bioinformatics Group (GRIB), Department of Experimental and Life Sciences, University Pompeu Fabra, C. Doctor Aiguader, 88, Barcelona 08003, Catalonia, Spain, E-mail:

Received: 2014-09-10

Accepted: 2014-10-15

Published Online: 2014-11-27

Published in Print: 2014-12-19

Citation Information: Bio-Algorithms and Med-Systems, Volume 10, Issue 4, Pages 195–212, ISSN (Online) 1896-530X, ISSN (Print) 1895-9091, DOI: https://doi.org/10.1515/bams-2014-0016.

Export Citation

©2014 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in