Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bio-Algorithms and Med-Systems

Editor-in-Chief: Roterman-Konieczna , Irena

4 Issues per year


CiteScore 2017: 0.43

SCImago Journal Rank (SJR) 2017: 0.160
Source Normalized Impact per Paper (SNIP) 2017: 0.223

Online
ISSN
1896-530X
See all formats and pricing
More options …

Rough assessment of GPU capabilities for parallel PCC-based biclustering method applied to microarray data sets

Patryk Orzechowski
  • Corresponding author
  • Faculty of Electrical Engineering, Department of Automatics and Bioengineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Cracow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Boryczko
  • Faculty of Computer Science, Department of Computer Science, Electronics, and Telecommunications, AGH University of Science and Technology, Cracow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-02 | DOI: https://doi.org/10.1515/bams-2015-0033

Abstract

Parallel computing architectures are proven to significantly shorten computation time for different clustering algorithms. Nonetheless, some characteristics of the architecture limit the application of graphics processing units (GPUs) for biclustering task, whose function is to find focal similarities within the data. This might be one of the reasons why there have not been many biclustering algorithms proposed so far. In this article, we verify if there is any potential for application of complex biclustering calculations (CPU+GPU). We introduce minimax with Pearson correlation – a complex biclustering method. The algorithm utilizes Pearson’s correlation to determine similarity between rows of input matrix. We present two implementations of the algorithm, sequential and parallel, which are dedicated for heterogeneous environments. We verify the weak scaling efficiency to assess if a heterogeneous architecture may successfully shorten heavy biclustering computation time.

Keywords: biclustering; data mining; graphics processing unit (GPU); OpenCL; parallel algorithms

References

  • 1.

    Cheng Y, Church G. Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology 2000;8:93–103.Google Scholar

  • 2.

    Eren K, Deveci M, Küçüktunç O, Çatalyürek Ü. A comparative analysis of biclustering algorithms for gene expression data. Brief Bioinform 2013;14:279–92.Web of ScienceCrossrefGoogle Scholar

  • 3.

    Madeira S, Oliveira A. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 2004;1:24–45.Google Scholar

  • 4.

    Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, et al. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 2006;22:1122–9.Google Scholar

  • 5.

    Bisson G, Hussain F. Chi-sim: a new similarity measure for the co-clustering task. In: Seventh International Conference on Machine Learning and Applications, ICMLA ‘08, December 2008:211–7.Google Scholar

  • 6.

    Busygin S, Prokopyev O, Pardalos PM. Biclustering in data mining. Comput Oper Res 2008;35:2964–87.Web of ScienceGoogle Scholar

  • 7.

    de Franca F, Coelho G, Zuben FV. Predicting missing values with biclustering: a coherence-based approach. Pattern Recog 2013;46:1255–66.CrossrefGoogle Scholar

  • 8.

    Cristovao F, Madeira S. Parallel e-ccc-biclustering: mining approximate temporal patterns in gene expression time series using parallel biclustering. In: Rocha MP, Luscombe N, Fdez-Riverola F, Rodríguez JM, editors. 6th International Conference on Practical Applications of Computational Biology and Bioinformatics, Adv Intell Soft Comput 2012;154:21–31. Berlin, Heidelberg: Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-28839-5_3.Crossref

  • 9.

    Liu B, Xin Y, Cheung RC, Yan H. GPU-based biclustering for microarray data analysis in neurocomputing. Neurocomputing 2014;134:239–46.Web of ScienceGoogle Scholar

  • 10.

    Lo A, Liu B, Cheung R. GPU-based biclustering for neural information processing. In: Huang T, Zeng Z, Li C, Leung C, editors. Neural information processing, Lecture Notes Comput Sci 2012;7667:134–41. Berlin, Heidelberg: Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-34500-5_17.Crossref

  • 11.

    Mejia-Roa E, Garcia C, Gomez JI, Prieto M, Tirado F, Nogales R, et al. Biclustering and classification analysis in gene expression using nonnegative matrix factorization on multi-GPU systems. In: 11th International Conference on Intelligent Systems Design and Applications (ISDA). Cordoba, Spain: IEEE 2011:882–7.Google Scholar

  • 12.

    Aguilar-Ruiz J. Shifting and scaling patterns from gene expression data. Bioinformatics 2005;21:3840–5.Google Scholar

  • 13.

    Bozdağ D, Parvin JD, Catalyurek UV. A biclustering method to discover co-regulated genes using diverse gene expression datasets. In: Proceedings of the 1st International Conference on Bioinformatics and Computational Biology, BICoB ‘09. Berlin, Heidelberg: Springer-Verlag, 2009:151–63. http://dx.doi.org/10.1007/978-3-642-00727-9_16.Crossref

  • 14.

    Ben-Dor A, Chor B, Karp R, Yakhini Z. Discovering local structure in gene expression data: the order-preserving submatrix problem. In: Proceedings of the Sixth Annual International Conference on Computational Biology, RECOMB ‘02, ACM, New York, NY, USA, 2002:49–57. http://doi.acm.org/10.1145/565196.565203.Crossref

  • 15.

    Li G, Ma Q, Tang H, Paterson A, Xu Y. QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucl Acids Res 2009;37:e101.Google Scholar

  • 16.

    Orzechowski P, Boryczko K. Effective biclustering on GPU – capabilities and constraints. Prz Elektrotechniczn 2015;1:133–6.Google Scholar

  • 17.

    NVIDIA Corporation: CUDA C Programming Guide 2014, pG-02829-001_v6.0.Google Scholar

  • 18.

    Lazzeroni L, Owen A. Plaid models for gene expression data. Stat Sin 2002;12:61–86.Google Scholar

  • 19.

    Murali T, Kasif S. Extracting conserved gene expression motifs from gene expression data. In: Proceeding of the Pacific Symposium on Biocomputing, vol. 3, 2003:77–88.Google Scholar

  • 20.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995;57:289–300.Google Scholar

About the article

Corresponding author: Patryk Orzechowski, Faculty of Electrical Engineering, Department of Automatics and Bioengineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Cracow, Poland, E-mail:


Received: 2015-09-25

Accepted: 2015-10-20

Published Online: 2015-12-02

Published in Print: 2015-12-01


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This research was funded by the Polish National Science Center (Narodowe Centrum Nauki, grant no. 2013/11/N/ST6/03204). This research was supported in part by PL-Grid Infrastructure.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Bio-Algorithms and Med-Systems, Volume 11, Issue 4, Pages 243–248, ISSN (Online) 1896-530X, ISSN (Print) 1895-9091, DOI: https://doi.org/10.1515/bams-2015-0033.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jorge González-Domínguez and Roberto R. Expósito
Information Sciences, 2018
[2]
Jorge González-Domínguez, Roberto R. Expósito, and Junwen Wang
PLOS ONE, 2018, Volume 13, Number 4, Page e0194361

Comments (0)

Please log in or register to comment.
Log in