Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bio-Algorithms and Med-Systems

Editor-in-Chief: Roterman-Konieczna , Irena

4 Issues per year

CiteScore 2017: 0.43

SCImago Journal Rank (SJR) 2017: 0.160
Source Normalized Impact per Paper (SNIP) 2017: 0.223

See all formats and pricing
More options …

Adaptation of the humanoid robot to speech disfluency therapy

Łukasz Kwaśniewicz
  • Corresponding author
  • Institute of Computer Science, Department of Neuroinformatics, Marie Curie-Skłodowska University, ul. Akademicka 9, 20-033 Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wiesława Kuniszyk-Jóźkowiak
  • Faculty of Physical Education and Sport in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Akademicka 2, 21-500 Biała Podlaska, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz M. Wójcik
  • Institute of Computer Science, Department of Neuroinformatics, Marie Curie-Skłodowska University, ul. Akademicka 9, 20-033 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jolanta Masiak
  • Neurophysiological Independent Unit, Medical University in Lublin, Głuska 2, 20-439 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-16 | DOI: https://doi.org/10.1515/bams-2016-0018


The paper describes an application that allows to use a humanoid robot as a stutterer’s assistant and therapist. Auditory and visual feedback has been used in the therapy with a humanoid robot. For this purpose, the common method of “echo” was modified. The modification is that the speaker hears delayed speech sounds uttered by the robot. The sounds of speech coming from an external microphone are captured and delayed by a computer and then, using User Datagram Protocol (UDP), sent to the robot’s system and played in its speakers. This system allows the elimination of negative feedback and external sound field’s noise. The effect of this therapy is enhanced by the fact that, in addition to the effect, relating to the action of the delayed feedback, the speaker has company during the difficult process of speaking. Visual feedback has been realized as changes in the robot’s hand movements according to the shape of the speech signal envelope and possibility of controlling speech with a metronome effect.

Keywords: echo method; humanoid robot; stuttering therapy; visual feedback


  • 1.

    Adamczyk B. Anwendung des Apparates für die Erzeugung von künstlichem Widerhall bei der Behandlung des Stotterns. Folia Phoniat 1959;11:216–8.CrossrefGoogle Scholar

  • 2.

    Adamczyk B. 30-Years of the “echo-method”. In: Stuttering. Proc. of IX Scientific Conference of the Polish Logopaedic Society, Lublin, 1987:7–14 (in Polish).Google Scholar

  • 3.

    Adamczyk B. Speech correction method and a device by telephone to this method. Home Patent 47696, 1963.

  • 4.

    Van Borsel J, Reunes G, Van den Bergh N. Delayed auditory feedback in the treatment of stuttering: clients as consumers. Int J Language Commun Disord 2003;38:119–29.CrossrefGoogle Scholar

  • 5.

    Radford N, Tanguma J, Gonzalez M, Nericcio MA, Newman D. A case study of mediated learning, delayed auditory feedback, and motor repatterning to reduce stuttering. Percept Motor Skills 2005;101:63–71.CrossrefGoogle Scholar

  • 6.

    Gallop RF, Runyan CM. Long-term effectiveness of the SpeechEasy fluency-enhancement device. J Fluency Disord 2012;37:334–43.PubMedCrossrefGoogle Scholar

  • 7.

    Botterill W. Developing the therapeutic relationship: from ‘expert’ professional to ‘expert’ person who stutter. J Fluency Disord 2011;36:158–73.PubMedCrossrefGoogle Scholar

  • 8.

    Packman A, Meredith G. Technology and the evolution of clinical methods for stuttering. J Fluency Disord 2011;36:76–85.Web of ScienceGoogle Scholar

  • 9.

    Van Borsel J, Drummond D, Medeiros de Britto Pereira M. Delayed auditory feedback and acquired neurogenic stuttering. J Neurolinguist 2010;23:479–87.CrossrefWeb of ScienceGoogle Scholar

  • 10.

    Foundas AL, Mock JR, Corey DM, Golob EJ, Comture EG. The SpeechEasy device in stuttering and nonstuttering adults: fluency effects while speaking and reading. Brain Language 2013;126:141–50.CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Adamczyk B, Kuniszyk-Jóźkowiak W, Smołka E. Influence of echo and reverberation on the speech process. Folia Phoniat 1979;31:70–81.CrossrefGoogle Scholar

  • 12.

    Adamczyk B, Kuniszyk-Jóźkowiak W, Sadowska E. Correction effect in chorus speaking by stuttering people. In: XVIth International Congress of Logopedics and Phoniatrics, Interlaken, 1976:2–6.Google Scholar

  • 13.

    Choe YK, Jung HT, Baird J, Grupen RA. Multidisciplinary stroke rehabilitation delivered by a humanoid robot: interaction between speech and physical therapies. Aphasiology 2013;27:252–70.CrossrefWeb of ScienceGoogle Scholar

  • 14.

    Kuniszyk-Jóźkowiak W, Dzieńkowski M, Smołka E, Suszyński W. Computer diagnosis and therapy of stuttering. Structures-Waves-Human Health 2003;XII:133–44.Google Scholar

  • 15.

    Dzieńkowski M, Kuniszyk-Jóźkowiak W, Smołka E, Suszyński W. Computer speech echo corrector. Ann UMCS Inf 2004:315–322.Google Scholar

  • 16.

    Kuniszyk-Jóźkowiak W, Smołka E, Adamczyk B. Effect of visual and tactile reverberation on speech fluency of stutterers. Folia Phoniat Logopaed 1997:49:26–34.CrossrefGoogle Scholar

  • 17.

    http://www.roboshop.pl/nao.html. Accessed: 7 June 2016.

  • 18.

    https://www.aldebaran.com/en/more-about. Accessed: 7 June 2016.

  • 19.

    Hunt C. TCP/IP-Network Administration. Oficyna Wydawnicza READ ME, 1996:24.

  • 20.

    http://home.agh.edu.pl/∼opal/sieci/instrukcje/stream.pdf. Accessed: 7 June 2016.

  • 21.

    Gardecki A, Kawala-Janik A. The application extending the capabilities of the human-robot interaction of the humanoid robot NAO. Prace Inst Elektrotech 2016;63:EN 45–54.CrossrefGoogle Scholar

  • 22.

    http://doc.aldebaran.com/2-1/family/robots/joints_robot.html. Accessed: 7 June 2016.

  • 23.

    Miskam MA, Masnin NF, Jamhuri MH, Shamsuddin S, Omar AR, Yussof H. Encouraging children with autism to improve social and communication skills through the game-based approach. Procedia Comput Sci 2014;42:93–8.CrossrefGoogle Scholar

  • 24.

    Ismail LI, Shamsudin S, Yussof H, Hanapiah FA, Zahari NI. Robot-based intervention program for autistic children with humanoid robot NAO: initial response in stereotyped behavior. Procedia Eng 2012;41:1441–7.CrossrefGoogle Scholar

  • 25.

    Shamsuddin S, Yussof H, Ismail LI, Mohamed S, Hanapiah FA, Zahari NI. Initial response in HRI—a case study on evaluation of child with autism spectrum disorders interacting with a humanoid robot NAO. Procedia Eng 2012;41:1448–55.CrossrefGoogle Scholar

  • 26.

    Shamsuddin S, Yussof H, Ismail LI, Mohamed S, Hanapiah FA, Zahari NI. Humanoid robot NAO interacting with autistic children of moderately impaired intelligence to augment communication skills. Procedia Eng 2012;41:1533–8.CrossrefGoogle Scholar

  • 27.

    Fosnot SM, Jun S. Prosodic characteristics in children with stuttering or autism during reading and imitation. In: Proceedings of the 14th International Congress of Phonetic Sciences. Berkeley, CA: University of California, 1999:1925–8.Google Scholar

  • 28.

    Duch W, Nowak W, Meller J, Osiński G, Dobosz K, Mikołajewski D, et al. Consciousness and attention in autism spectrum disorders. In: Proceedings of Cracow Grid Workshop, 2011;2010:202–11.Google Scholar

  • 29.

    Duch W, Nowak W, Meller J, Osiński G, Dobosz K, Mikołajewski D, et al. Computational approach to understanding autism spectrum disorders. Computer Science 2012;13:47–61.CrossrefGoogle Scholar

  • 30.

    Dobosz K, Mikołajewski D, Wójcik GM, Duch W. Simple cyclic movements as a distinct autism feature-computational approach. Comput Sci 2013;14:475–89.CrossrefGoogle Scholar

  • 31.

    Wojcik GM, Ważny M. Bray-Curtis metrics as measure of liquid state machine separation ability in function of connections density. Procedia Comput Sci 2015;51:2979–83.CrossrefGoogle Scholar

  • 32.

    Kawala-Janik A, Gardecki A, Podpora M, Kolańska-Płuska J, Grochowicz B. Implementation of the LES systems and NAO humanoid robots in children. In: Międzynarodowa Konferencja z Podstaw Elektrotechniki i Teorii Obwodów IC-SPETO, Gliwice-Ustron, 20–23 maj 2015.Google Scholar

About the article

Received: 2016-09-27

Accepted: 2016-10-24

Published Online: 2016-11-16

Published in Print: 2016-12-01

Author contributions: The authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Bio-Algorithms and Med-Systems, Volume 12, Issue 4, Pages 169–177, ISSN (Online) 1896-530X, ISSN (Print) 1895-9091, DOI: https://doi.org/10.1515/bams-2016-0018.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in