Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bio-Algorithms and Med-Systems

Editor-in-Chief: Roterman-Konieczna , Irena

CiteScore 2017: 0.43

SCImago Journal Rank (SJR) 2017: 0.160
Source Normalized Impact per Paper (SNIP) 2017: 0.223

See all formats and pricing
More options …

Phylogenetic and variability study on all known hemagglutinin subtypes of influenza A virus

Rafał Filip
  • Corresponding author
  • Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacek Leluk
  • Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-13 | DOI: https://doi.org/10.1515/bams-2017-0009


Hemagglutinin (HA) is a surface glycoprotein found in influenza viruses. This particle plays two crucial functions in the viral life cycle: it allows for the attachment of the virus into the host cell and participates in the fusion of the virus and host membranes. There are 18 different subtypes of HA. Recently, the H17 and H18 strains have been discovered whose hosts were bats. The evolution of these two strains had most likely occurred in isolation for a long period of time. This work presents the phylogenetic analysis and study on mutational variability based on sequences from all 18 currently known HA strains belonging to influenza virus type A. The results have been presented regarding the current knowledge about influenza. The classical software (Clustal, PHYLIP, and ConSurf) as well as original applications (SSSSg and Consensus Constructor) have been used in this research.

This article offers supplementary material which is provided at the end of the article.

Keywords: hemagglutinin (HA); influenza A virus; phylogenesis of HA influenza; variability of HA


  • 1.

    Sriwilaijaroen N, Suzuki Y. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci 2012;88:226–49.PubMedCrossrefGoogle Scholar

  • 2.

    Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 1983;303:35–40.CrossrefPubMedGoogle Scholar

  • 3.

    Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med 2009;82:153–9.PubMedGoogle Scholar

  • 4.

    Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006;312:404–10.CrossrefPubMedGoogle Scholar

  • 5.

    Russell RJ, Kerry PS, Stevens DJ, Steinhauer DA, Martin SR, Gamblin SJ, et al. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proc Natl Acad Sci USA 2008;105:17736–41.CrossrefGoogle Scholar

  • 6.

    Huang Q, Sivaramakrishna RP, Ludwig K, Korte T, Bottcher C, Herrmann A. Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: stability and energetics of the hemagglutinin. Biochim Biophys Acta 2003;1614:3–13.PubMedCrossrefGoogle Scholar

  • 7.

    Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 2010;285:28403–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 8.

    Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog 2013;9:e1003657.Web of ScienceCrossrefPubMedGoogle Scholar

  • 9.

    Mehle A. Unusual influenza A viruses in bats. Viruses 2014;6:3438–49.Web of ScienceCrossrefPubMedGoogle Scholar

  • 10.

    Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev 2013;26:476–92.Web of ScienceCrossrefPubMedGoogle Scholar

  • 11.

    The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res 2015;43:D204–12.PubMedGoogle Scholar

  • 12.

    Liu J, Stevens DJ, Haire LF, Walker PA, Coombs PJ, Russell RJ, et al. Structures of receptor complexes formed by hemagglutinins from the Asian influenza pandemic of 1957. Proc Natl Acad Sci USA 2009;106:17175–80.CrossrefGoogle Scholar

  • 13.

    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235–42.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 14.

    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 15.

    Lassmann T, Frings O, Sonnhammer EL. Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res 2009;37:858–65.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 16.

    Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, et al. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 2011;39:W13–7.Web of ScienceCrossrefPubMedGoogle Scholar

  • 17.

    Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988;16:10881–90.PubMedCrossrefGoogle Scholar

  • 18.

    Górecki A, Leluk J, Lesyng B. A Java-implementation of a genetic semihomology algorithm (GEISHA), and its applications for analyses of selected protein families. Eur J Biochem 2004;271:30.Google Scholar

  • 19.

    Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, 2005.

  • 20.

    Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010;38:W529–33.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 21.

    Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 2016;44:W344–50.Web of SciencePubMedCrossrefGoogle Scholar

  • 22.

    Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, et al. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Israel J Chem 2013;53:199–206.CrossrefWeb of ScienceGoogle Scholar

  • 23.

    Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 2005;33:W299–302.CrossrefPubMedGoogle Scholar

  • 24.

    Gajewska E, Leluk J. An approach to sequence similarity significance estimation. Bio-Algorithms Med-Syst 2005;1:121–4.Google Scholar

  • 25.

    Perrière G, Gouy M. WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 1996;78:364–9.CrossrefPubMedGoogle Scholar

  • 26.

    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.PubMedCrossrefGoogle Scholar

  • 27.

    Fogtman A, Leluk J, Lesyng B. β-Spectrin consensus sequence construction with variable threshold parameters; verification of usefulness. Bio-Algorithms Med-Syst 2005;1:117–20.Google Scholar

  • 28.

    Sun X, Tse LV, Ferguson AD, Whittaker GR. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J Virol 2010;84:8683–90.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 29.

    Zhang Y, Sun Y, Sun H, Pu J, Bi Y, Shi Y, et al. A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity and neurovirulence of H5N1 influenza virus in mice. J Virol 2012;86:6924–31.Web of SciencePubMedCrossrefGoogle Scholar

  • 30.

    Cross KJ, Langley WA, Russell RJ, Skehel JJ, Steinhauer DA. Composition and functions of the influenza fusion peptide. Protein Pept Lett 2009;16:766–78.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 31.

    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25: 3389–402.PubMedCrossrefGoogle Scholar

About the article

Received: 2017-03-27

Accepted: 2017-05-18

Published Online: 2017-06-13

Published in Print: 2017-09-26

Author contributions: The authors accept responsibility for the entire content of this article and approved its submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Bio-Algorithms and Med-Systems, Volume 13, Issue 3, Pages 153–159, ISSN (Online) 1896-530X, ISSN (Print) 1895-9091, DOI: https://doi.org/10.1515/bams-2017-0009.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in