Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bio-Algorithms and Med-Systems

Editor-in-Chief: Roterman-Konieczna , Irena

CiteScore 2018: 0.29

SCImago Journal Rank (SJR) 2018: 0.129
Source Normalized Impact per Paper (SNIP) 2018: 0.324

ICV 2018: 120.80

See all formats and pricing
More options …

Chain-chain complexation and heme binding in haemoglobin with respect to the hydrophobic core structure

Magdalena Ptak
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Scienceinstitution, Jagiellonian University, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mateusz Banach
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Scienceinstitution, Jagiellonian University, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zdzisław Wiśniowski
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leszek Konieczny / Irena Roterman
  • Corresponding author
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-23 | DOI: https://doi.org/10.1515/bams-2017-0024


Heme binding by proteins and protein-protein complexation are the processes strongly related to the biological activity of proteins. The mechanism of these processes has not been still recognised. These phenomena are presented using haemoglobin as the example. Half of the mature haemoglobin (one α-chain and one β-chain) treated as a dissociation step in haemoglobin degradation reveals a specific change in heme binding after dissociation. This phenomenon is the object of analysis that interprets the structure of both complexes (tetramer and dimer) with respect to their hydrophobic core structure. The results suggest the higher stability of the complex in the form of one α-chain and one β-chain with respect to the hydrophobic core.

Keywords: heme binding; hydrophobicity; protein folding; protein-protein complexation; tertiary structure


  • 1.

    Vasseur C, Baudin-Creuza V. Role of alpha-hemoglobin molecular chaperone in the hemoglobin formation and clinical expression of some hemoglobinopathies. Transfus Clin Biol 2015;22:49–57.PubMedWeb of ScienceGoogle Scholar

  • 2.

    Visscher KM, Kastritis PL, Bonvin AM. Non-interacting surface solvation and dynamics in protein-protein interactions. Proteins 2015;83:445–58.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 3.

    Das A, Chakrabarti J, Ghosh M. Thermodynamics of interfacial changes in a protein-protein complex. Mol Biosyst 2014;10:437–45.Web of ScienceCrossrefGoogle Scholar

  • 4.

    Yura K, Hayward S. The interwinding nature of protein-protein interfaces and its implication for protein complex formation. Bioinformatics 2009;25:3108–13.Web of SciencePubMedCrossrefGoogle Scholar

  • 5.

    Cameron DL, Jakus J, Pauleta SR, Pettigrew GW, Cooper A. Pressure perturbation calorimetry and the thermodynamics of noncovalent interactions in water: comparison of protein-protein. protein-heme. and cyclodextrin-adamantane complexes. J Phys Chem B 2010;114:16228–35.CrossrefGoogle Scholar

  • 6.

    Bougouffa S, Warwicker J. Volume-based solvation models out-perform area-based models in combined studies of wild-type and mutated protein-protein interfaces. BMC Bioinformatics 2008;9:448.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 7.

    Guharoy M, Chakrabarti P. Conservation and relative importance of residues across protein-protein interfaces. Proc Natl Acad Sci USA 2005;102:15447–52.CrossrefGoogle Scholar

  • 8.

    Ehrlich LP, Nilges M, Wade RC. The impact of protein flexibility on protein-protein docking. Proteins 2005;58:126–33.PubMedGoogle Scholar

  • 9.

    Nienhaus K, Hahn V, Hüpfel M, Nienhaus GU. Substrate binding primes human tryptophan 2,3-dioxygenase for heme binding. J Phys Chem B 2017;121:7412–20.CrossrefPubMedGoogle Scholar

  • 10.

    Falk JE, Phillips JN, Perrin DD, O’Hagan JE. Binding of haem to protein in haemoglobin and myoglobin. Nature 1959;184:1651–2.CrossrefPubMedGoogle Scholar

  • 11.

    Keilin J. Nature of the haem-binding groups in native and denatured haemoglobin and myoglobin. Nature 1960;187:365–71.PubMedCrossrefGoogle Scholar

  • 12.

    Benesch R. The molecular origin of the control mechanisms in haemoglobin. Bibl Haematol 1968;29:1049–55.PubMedGoogle Scholar

  • 13.

    Bunn HF, Jandl JH. Exchange of heme among hemoglobins and between haemoglobin and albumin. J Biol Chem 1968;243:465–75.PubMedGoogle Scholar

  • 14.

    Krinsky MM, Alexander NM. Thyroid peroxidase. Nature of the heme binding to apoperoxidase. J Biol Chem 1971;246:4755–8.PubMedGoogle Scholar

  • 15.

    Nagel RL, Gibson QH, Jenkins T. Heme binding in haemoglobin J Capetown. J Mol Biol 1971;58:643–50.CrossrefPubMedGoogle Scholar

  • 16.

    Uchida H, Heystek J, Klapper MH. Effect of structural perturbations on the heme-binding properties of human methemoglobin A. J Biol Chem 1971;246:6843–8.Google Scholar

  • 17.

    Gersonde K. Interaction between heme group and protein structure. Hamatol Bluttransfus 1972;10:183–90.PubMedGoogle Scholar

  • 18.

    Fox JB Jr, Dymicky M, Wasserman AE. Heme-protein-heme interactions. Adv Exp Med Biol 1974;48:97–108.CrossrefPubMedGoogle Scholar

  • 19.

    Caughey WS, Smythe GA, O’Keeffe DH, Maskasky JE, Smith MI. Heme A of cytochrome c oxidase. Structure and properties: comparisons with hemes B, C, and S and derivatives. J Biol Chem 1975;250:7602–22.PubMedGoogle Scholar

  • 20.

    Alberding N, Austin RH, Beeson KW, Chan SS, Eisenstein L, Frauenfelder H, et al. Tunneling in heme binding to heme proteins. Science 1976;192:1002–4.PubMedCrossrefGoogle Scholar

  • 21.

    Goddard WA 3rd, Olafson BD. Theoretical studies of oxygen binding. Ann N Y Acad Sci 1981;367:419–33.PubMedCrossrefGoogle Scholar

  • 22.

    Rai J. Mini heme-proteins: designability of structure and diversity of functions. Curr Protein Pept Sci 2017;18:1132–40.Web of SciencePubMedGoogle Scholar

  • 23.

    Lukin JA, Kontaxis G, Simplaceanu V, Yuan Y, Bax A, Ho C. Quaternary structure of hemoglobin in solution. Proc Natl Acad Sci USA 2003;100:517–20.CrossrefGoogle Scholar

  • 24.

    Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. BMC Struct Biol 2012;12:6.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 25.

    Konieczny L, Brylinski M, Roterman I. Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 2006;6:15–22.PubMedGoogle Scholar

  • 26.

    Kalinowska B, Banach M, Konieczny L, Roterman I. Application of divergence entropy to characterize the structure of the hydrophobic core in DNA interacting proteins. Entropy 2015;17:1477–507.CrossrefWeb of ScienceGoogle Scholar

  • 27.

    Yi J, Thomas LM, Musayev FN, Safo MK, Richter-Addo GB. Crystallographic trapping of heme loss intermediates during the nitrite-induced degradation of human haemoglobin. Biochemistry 2011;50:8323–32.CrossrefPubMedGoogle Scholar

  • 28.

    Seixas FA, de Azevedo WF Jr, Colombo MF. Crystallization and x-ray diffraction data analysis of human deoxyhaemoglobin A(0) fully stripped of any anions. Acta Crystallogr D Biol Crystallogr 1999;55(Pt 11):1914–6.CrossrefGoogle Scholar

  • 29.

    Brás NF, Fernandes PA, Ramos MJ. Discovery of new sites for drug binding to the hypertension-related renin-angiotensinogen complex. Chem Biol Drug Des 2014;83:427–39.Web of ScienceCrossrefPubMedGoogle Scholar

  • 30.

    Bertonati C, Honig B, Alexov E. Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Biophys J 2007;92:1891–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 31.

    Bonet J, Caltabiano G, Khan AK, Johnston MA, Corbí C, Gómez A, et al. The role of residue stability in transient protein-protein interactions involved in enzymatic phosphate hydrolysis. A computational study. Proteins 2006;63:65–77.PubMedGoogle Scholar

  • 32.

    Schreiber G. Kinetic studies of protein-protein interactions. Curr Opin Struct Biol 2002;12:41–7.PubMedCrossrefGoogle Scholar

About the article

Received: 2017-10-30

Accepted: 2017-11-22

Published Online: 2017-12-23

Published in Print: 2017-12-20

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The work was financially supported by Jagiellonian University Medical College (Funder Id: 10.13039/100009045, grant systems K/ZDS/006363 and K/ZDS/006366).

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Bio-Algorithms and Med-Systems, Volume 13, Issue 4, Pages 179–185, ISSN (Online) 1896-530X, ISSN (Print) 1895-9091, DOI: https://doi.org/10.1515/bams-2017-0024.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in