Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bio-Algorithms and Med-Systems

Editor-in-Chief: Roterman-Konieczna , Irena

CiteScore 2018: 0.29

SCImago Journal Rank (SJR) 2018: 0.129
Source Normalized Impact per Paper (SNIP) 2018: 0.324

ICV 2018: 120.80

See all formats and pricing
More options …

Aggregation-promoting conditions necessary to create the complexes by acylphosphatase from the hyperthermophile Sulfolobus solfataricus

Mateusz Banach
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zdzisław Wiśniowski
  • Corresponding author
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Lazarza 16, 31-530 Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Ptak
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irena Roterman
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-07-04 | DOI: https://doi.org/10.1515/bams-2019-0023


The structural transition from the globular to the amyloid form of proteins requires aggregation-promoting conditions. The protein example of this category is acylphosphatase from the hyperthermophile Sulfolobus solfataricus. This protein represents a structure with a well-defined hydrophobic core. This is why the complexation (including oligomerization) of this protein is of low probability. The chain fragment participating in aggregation in comparison to the status with respect to the fuzzy oil drop model is discussed in this paper.

Keywords: aggregation-promoting conditions; amyloidosis; hydrophobicity


  • [1]

    Corazza A, Rosano C, Pagano K, Alverdi V, Esposito G, Capanni C, et al. Structure, conformational stability, and enzymatic properties of acylphosphatase from the hyperthermophile Sulfolobus solfataricus. Proteins 2006;62:64–79.PubMedGoogle Scholar

  • [2]

    Bemporad F, Ramazzotti M. From the evolution of protein sequences able to resist self-assembly to the prediction of aggregation propensity. In: Sandal M, editor. International review of cell and molecular biology. Netherlands: Elsevier, 2017:1–48.Google Scholar

  • [3]

    Bemporad F, DeSimone A, Chiti F, Dobson CM. Characterizing intermolecular interactions that initiate native-like protein aggregation. Biophys J 2012;102:2595–604.Web of ScienceCrossrefPubMedGoogle Scholar

  • [4]

    Thoma R, Hennig M, Sterner R, Kirschner K. Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima. Structure 2000;15:265–76.Google Scholar

  • [5]

    Dams T, Ostendorp R, Ott M, Rutkat K, Jaenicke R. Tetrameric and octameric lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. Structure and stability of the two active forms. Eur J Biochem 1996;240:274–9.PubMedCrossrefGoogle Scholar

  • [6]

    Kohlhoff M, Dahm A, Hensel R. Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett 1996;383:245–50.CrossrefPubMedGoogle Scholar

  • [7]

    Beaucamp N, Hofmann A, Kellerer B, Jaenicke R. Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase. Protein Sci 1997;6:2159–65.PubMedGoogle Scholar

  • [8]

    Bell GS, Russell RJ, Kohlhoff M, Hensel R, Danson MJ, Hough DW, et al. Preliminary crystallographic studies of triosephosphate isomerase (TIM) from the hyperthermophilic Archaeon Pyrococcus woesei. Acta Crystallogr D Biol Crystallogr 1998;54:1419–21.PubMedCrossrefGoogle Scholar

  • [9]

    Walden H, Bell GS, Russell RJ, Siebers B, Hensel R, Taylor GL. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. J Mol Biol 2001;306:745–57.CrossrefGoogle Scholar

  • [10]

    Tanaka H, Chinami M, Mizushima T, Ogasahara K, Ota M, Tsukihara T, et al. X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant. J Biochem 2001;130:107–18.CrossrefPubMedGoogle Scholar

  • [11]

    Jaenicke R, Schurig H, Beaucamp N, Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv Protein Chem 1996;48:181–269.PubMedCrossrefGoogle Scholar

  • [12]

    Rees DC. Crystallographic analyses of hyperthermophilic proteins. Methods Enzymol 2001;334:423–37.CrossrefPubMedGoogle Scholar

  • [13]

    Ishikawa K, Matsui I, Payan F, Cambillau C, Ishida H, Kawarabayasi Y, et al. A hyperthermostable D-ribose-5-phosphate isomerase from Pyrococcus horikoshii characterization and three-dimensional structure. Structure 2002;10:877–86.CrossrefPubMedGoogle Scholar

  • [14]

    Maes D, Zeelen JP, Thanki N, Beaucamp N, Alvarez M, Thi MH, et al. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Proteins 1999;37:441–53.CrossrefPubMedGoogle Scholar

  • [15]

    Jaenicke R, Böhm G. The stability of proteins in extreme environments. Curr Opin Struct Biol 1998;8:738–48.CrossrefPubMedGoogle Scholar

  • [16]

    Legrain C, Villeret V, Roovers M, Tricot C, Clantin B, Van Beeumen J, et al. Ornithine carbamoyltransferase from Pyrococcus furiosus. Methods Enzymol 2001;331:227–35.PubMedCrossrefGoogle Scholar

  • [17]

    Russell RJ, Ferguson JM, Hough DW, Danson MJ, Taylor GL. The crystal structure of citrate synthase from the hyperthermophilic Archaeon Pyrococcus furiosus at 1.9 A resolution. Biochemistry 1997;36:9983–94.PubMedCrossrefGoogle Scholar

  • [18]

    Yip KS, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, et al. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 1995;3:1147–58.PubMedCrossrefGoogle Scholar

  • [19]

    Auerbach G, Ostendorp R, Prade L, Korndörfer I, Dams T, Huber R, et al. Lactate dehydrogenase from the hyperthermophilic bacterium thermotoga maritima: the crystal structure at 2.1 A resolution reveals strategies for intrinsic protein stabilization. Structure 1998;6:769–81.PubMedCrossrefGoogle Scholar

  • [20]

    Arnott MA, Michael RA, Thompson CR, Hough DW, Danson MJ. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. J Mol Biol 2000;304:657–68.CrossrefPubMedGoogle Scholar

  • [21]

    Zhang X, Meining W, Fischer M, Bacher A, Ladenstein R. X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 A resolution: determinants of thermostability revealed from structural comparisons. J Mol Biol 2001;306:1099–114.PubMedCrossrefGoogle Scholar

  • [22]

    Lim JH, Yu YG, Han YS, Cho S, Ahn BY, Kim SH, et al. The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 A resolution: structural basis for thermostability. J Mol Biol 1997;270:259–74.PubMedCrossrefGoogle Scholar

  • [23]

    Backmann J, Schäfer G. Thermodynamic analysis of hyperthermostable oligomeric proteins. Methods Enzymol 2001;334:328–42.PubMedCrossrefGoogle Scholar

  • [24]

    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235–42.Web of ScienceCrossrefPubMedGoogle Scholar

  • [25]

    Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, et al. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 2017;45:D289–95.CrossrefWeb of SciencePubMedGoogle Scholar

  • [26]

    Konieczny L, Brylinski M, Roterman I. Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 2006;6:15–22.PubMedGoogle Scholar

  • [27]

    Kalinowska B, Banach M, Konieczny L, Roterman I. Application of divergence entropy to characterize the structure of the hydrophobic core in DNA interacting proteins. Entropy 2015;17:1477–507.CrossrefWeb of ScienceGoogle Scholar

  • [28]

    Gadzała M, Dułak D, Kalinowska B, Baster Z, Bryliński M, Konieczny L, et al. The aqueous environment as an active participant in the protein folding process. J Mol Graph Model 2019;87:227–39.Web of SciencePubMedCrossrefGoogle Scholar

  • [29]

    Kalinowska B, Banach M, Wiśniowski Z, Konieczny L, Roterman I. Is the hydrophobic core a universal structural element in proteins? J Mol Model 2017;23:205.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    Dygut J, Kalinowska B, Banach M, Piwowar M, Konieczny L, Roterman I. Structural interface forms and their involvement in stabilization of multidomain proteins or protein complexes. Int J Mol Sci 2016;17:1741.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2019-05-15

Accepted: 2019-06-04

Published Online: 2019-07-04

Funding Source: Jagiellonian University Medical College grant systems

Award identifier / Grant number: K/ZDS/006363

The work was financially supported by the Jagiellonian University Medical College grant systems (Funder Id: http://dx.doi.org/10.13039/100009045, grant no. K/ZDS/006363).

Ethical Approval: The conducted research is not related to either human or animal use.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Conflict of interests: The authors declare no conflict of interest.

Citation Information: Bio-Algorithms and Med-Systems, Volume 15, Issue 2, 20190023, ISSN (Online) 1896-530X, DOI: https://doi.org/10.1515/bams-2019-0023.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in