Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 383, Issue 3-4

Issues

Neurospora crassa Catalases, Singlet Oxygen and Cell Differentiation

L. Peraza / W. Hansberg
Published Online: 2005-06-01 | DOI: https://doi.org/10.1515/BC.2002.058

Abstract

The morphogenetic transitions of the N. crassa asexual life cycle are responses to a hyperoxidant state in which probably singlet oxygen is generated. Induction of catalase activity and catalase oxidation by singlet oxygen are consequences of this recurrent hyperoxidant state. Here the biochemical properties and regulation of two large monofunctional catalases are reviewed, and a new catalaseperoxidase gene and activity is described. Catalase-3 is associated to growing and Catalase-1 to nongrowing cells. Under stressful conditions one of these catalases is synthesized, depending on whether growth can be continued or a resistant cell has to be made. The catalaseperoxidase Catalase-2 was possibly derived from a bacterial enzyme. In contrast to the other catalases, Catalase-2 had catalase and peroxidase activity. Catalase-2 was expressed under conditions in which vacuolization of hyphae is observed. All three enzymes have a chlorin in its active site instead of ferroprotoheme IX and are resistant to molar concentrations of hydrogen peroxide. These and all other catalases tested so far are oxidized by singlet oxygen, probably at the heme moiety. The catalase activity is virtually unaffected by oxidation, but the enzymes are probably degraded more rapidly than the unmodified ones.

About the article

Published Online: 2005-06-01

Published in Print: 2002-04-12


Citation Information: Biological Chemistry, Volume 383, Issue 3-4, Pages 569–575, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2002.058.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Carmen Ruger-Herreros and Luis M. Corrochano
International Microbiology, 2019
[2]
Xianyun Sun, Fei Wang, Nan Lan, Bo Liu, Chengcheng Hu, Wei Xue, Zhenying Zhang, and Shaojie Li
Frontiers in Microbiology, 2019, Volume 10
[3]
Bo Liu, Haode Wang, Zhoujie Ma, Xiaotong Gai, Yanqiu Sun, Shidao He, Xian Liu, Yanfeng Wang, Yuanhu Xuan, and Zenggui Gao
PeerJ, 2018, Volume 6, Page e5103
[4]
Zheng Wang, Junrui Wang, Ning Li, Jigang Li, Frances Trail, Jay C. Dunlap, and Jeffrey P. Townsend
Molecular Ecology, 2017
[5]
Nohemí García-Ortiz, Francisco J. Figueroa-Martínez, Ulises Carrasco-Navarro, Ernesto Favela-Torres, and Octavio Loera
Fungal Biology, 2017
[6]
Marcel Zámocký, Queralt García-Fernández, Bernhard Gasselhuber, Christa Jakopitsch, Paul G. Furtmüller, Peter C. Loewen, Ignacio Fita, Christian Obinger, and Xavi Carpena
Journal of Biological Chemistry, 2012, Volume 287, Number 38, Page 32254
[7]
Yajun Wang, Qing Dong, Zhaolan Ding, Kexin Gai, Xiaoyun Han, Farah Naz Kaleri, Qun He, and Ying Wang
Free Radical Biology and Medicine, 2016, Volume 99, Page 139
[8]
Marcel Zámocký, Stefan Hofbauer, Irene Schaffner, Bernhard Gasselhuber, Andrea Nicolussi, Monika Soudi, Katharina F. Pirker, Paul G. Furtmüller, and Christian Obinger
Archives of Biochemistry and Biophysics, 2015, Volume 574, Page 108
[9]
Norbert Gyöngyösi and Krisztina Káldi
Antioxidants & Redox Signaling, 2014, Volume 20, Number 18, Page 3007
[10]
Marcel Zámocký, Gerhard Sekot, Mária Bučková, Jana Godočíková, Christina Schäffer, Marián Farkašovský, Christian Obinger, and Bystrík Polek
Archives of Microbiology, 2013, Volume 195, Number 6, Page 393
[11]
Jos H. M. Schippers, Hung M. Nguyen, Dandan Lu, Romy Schmidt, and Bernd Mueller-Roeber
Cellular and Molecular Life Sciences, 2012, Volume 69, Number 19, Page 3245
[12]
Marcel Zámocký, Paul G. Furtmüller, and Christian Obinger
Archives of Biochemistry and Biophysics, 2010, Volume 500, Number 1, Page 45
[13]
[14]
Irshad Ali Khan, Jian-Ping Lu, Xiao-Hong Liu, Abdur Rehman, and Fu-Cheng Lin
Microbiological Research, 2012, Volume 167, Number 6, Page 339
[15]
Adelaida Díaz, Eduardo Horjales, Enrique Rudiño-Piñera, Rodrigo Arreola, and Wilhelm Hansberg
Journal of Molecular Biology, 2004, Volume 342, Number 3, Page 971
[16]
Teresa M. Lamb, Katelyn E. Finch, and Deborah Bell-Pedersen
Fungal Genetics and Biology, 2012, Volume 49, Number 2, Page 180
[17]
Tatiana A. Belozerskaya, Natalia N. Gessler, Elena P. Isakova, and Yulia I. Deryabina
Journal of Signal Transduction, 2012, Volume 2012, Page 1
[18]
Adelaida Díaz, Víctor-Julián Valdés, Enrique Rudiño-Piñera, Eduardo Horjales, and Wilhelm Hansberg
Journal of Molecular Biology, 2009, Volume 386, Number 1, Page 218
[19]
Fabienne Malagnac, Hervé Lalucque, Gersende Lepère, and Philippe Silar
Fungal Genetics and Biology, 2004, Volume 41, Number 11, Page 982
[20]
Adelaida Díaz, Rosario A. Muñoz-Clares, Pablo Rangel, Victor-Julián Valdés, and Wilhelm Hansberg
Biochimie, 2005, Volume 87, Number 2, Page 205
[21]
Magdalena Bartoszewska and Jan A.K.W. Kiel
Antioxidants & Redox Signaling, 2011, Volume 14, Number 11, Page 2271
[22]
Shaday Michán, Fernando Lledı́as, James D Baldwin, Donald O Natvig, and Wilhelm Hansberg
Free Radical Biology and Medicine, 2002, Volume 33, Number 4, Page 521
[23]
Jesús Aguirre, Mauricio Ríos-Momberg, David Hewitt, and Wilhelm Hansberg
Trends in Microbiology, 2005, Volume 13, Number 3, Page 111
[24]
Miguel J. Beltrán-García, Gilberto Manzo-Sanchez, Salvador Guzmán-González, Carlos Arias-Castro, Martha Rodríguez-Mendiola, Martin Avila-Miranda, and Tetsuya Ogura
Canadian Journal of Microbiology, 2009, Volume 55, Number 7, Page 887
[25]
Patthama Pongpom, Chester R. Cooper, and Nongnuch Vanittanakom
Medical Mycology, 2005, Volume 43, Number 5, Page 403
[26]
LEILA M. BLACKMAN and ADRIENNE R. HARDHAM
Molecular Plant Pathology, 2008, Volume 9, Number 4, Page 495
[27]
Didem Sutay Kocabas, Ufuk Bakir, Simon E. V. Phillips, Michael J. McPherson, and Zumrut B. Ogel
Applied Microbiology and Biotechnology, 2008, Volume 79, Number 3, Page 407
[28]
Kazuhiro Yamashita, Azusa Shiozawa, Shinpei Banno, Fumiyasu Fukumori, Akihiko Ichiishi, Makoto Kimura, and Makoto Fujimura
Genes & Genetic Systems, 2007, Volume 82, Number 4, Page 301
[29]
Pari Skamnioti, Catherine Henderson, Ziguo Zhang, Zena Robinson, and Sarah Jane Gurr
Molecular Plant-Microbe Interactions, 2007, Volume 20, Number 5, Page 568
[30]
Eva Nathues, Suchitra Joshi, Klaus B. Tenberge, Marcell von den Driesch, Birgitt Oeser, Nicole Bäumer, Martina Mihlan, and Paul Tudzynski
Molecular Plant-Microbe Interactions, 2004, Volume 17, Number 4, Page 383
[31]
Niyan Wang, Yusuke Yoshida, and Kohji Hasunuma
Molecular Genetics and Genomics, 2006, Volume 277, Number 1, Page 13
[32]
Hiroyuki Yasui, Seiko Hayashi, and Hiromu Sakurai
Drug Metabolism and Pharmacokinetics, 2005, Volume 20, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in