Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Wissenschaftlicher Beirat: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
Alle Formate und Preise
Weitere Optionen …
Band 383, Heft 3-4

Hefte

Human Neutrophils Oxidize Low-Density Lipoprotein by a Hypochlorous Acid- Dependent Mechanism: The Role of Vitamin C

A.C. Carr / B. Frei
Online erschienen: 01.06.2005 | DOI: https://doi.org/10.1515/BC.2002.065

Abstract

Oxidatively modified lowdensity lipoprotein (LDL) has been strongly implicated in the pathogenesis of atherosclerosis. Peripheral blood leukocytes, such as neutrophils, can oxidize LDL by processes requiring superoxide and redoxactive transition metal ions; however, it is uncertain whether such catalytic metal ions are available in the artery wall. Stimulated leukocytes also produce the reactive oxidant hypochlorous acid (HOCl) via the heme enzyme myeloperoxidase. Since myeloperoxidasederived HOCl may be a physiologically relevant oxidant in atherogenesis, we investigated the mechanisms of neutrophilmediated LDL modification and its possible prevention by the antioxidant ascorbate (vitamin C). As a sensitive marker of LDL oxidation, we measured LDL thiol groups. Stimulated human neutrophils (5106 cells/ml) incubated with human LDL (0.25 mg protein/ml) timedependently oxidized LDL thiols (33% and 79% oxidized after 10 and 30 min, respectively). Supernatants from stimulated neutrophils also oxidized LDL thiols (33% oxidized after 30 min), implicating longlived oxidants such as Nchloramines. Experiments using specific enzyme inhibitors and oxidant scavengers showed that HOCl, but not hydrogen peroxide nor superoxide, plays a critical role in LDL thiol oxidation by neutrophils. Ascorbate (200 M) protected against neutrophilmediated LDL thiol oxidation for up to 15 min of incubation, after which LDL thiols became rapidly oxidized. Although stimulated neutrophils accumulated ascorbate during oxidation of LDL, preloading of neutrophils with ascorbate did not attenuate oxidant production by the cells. Thus, activated neutrophils oxidize LDL thiols by HOCl and Nchloramine dependent mechanisms and physiological concentrations of vitamin C delay this process, most likely due to scavenging of extracellular oxidants, rather than by attenuating neutrophil oxidant production.

Artikelinformationen

Online erschienen: 01.06.2005

Erschienen im Druck: 12.04.2002


Quellenangabe: Biological Chemistry, Band 383, Heft 3-4, Seiten 627–636, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2002.065.

Zitat exportieren

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[1]
Kamil Karolczak and Cezary Watala
Oxidative Medicine and Cellular Longevity, 2019, Jahrgang 2019, Seite 1
[2]
Roland Stocker and John F. Keaney
Physiological Reviews, 2004, Jahrgang 84, Nummer 4, Seite 1381
[3]
Robert J. Hillstrom, Angela K. Yacapin-Ammons, and Sean M. Lynch
The Journal of Nutrition, 2003, Jahrgang 133, Nummer 10, Seite 3047
[4]
Yi Li and Herb E. Schellhorn
The Journal of Nutrition, 2007, Jahrgang 137, Nummer 10, Seite 2171
[5]
J. Lönn, S. Ljunggren, K. Klarström-Engström, I. Demirel, T. Bengtsson, and H. Karlsson
Journal of Periodontal Research, 2018
[6]
Stephanie Bozonet, Anitra Carr, Juliet Pullar, and Margreet Vissers
Nutrients, 2015, Jahrgang 7, Nummer 4, Seite 2574
[7]
Amir Shamloo, AmirAli Selahi, and Masoud Madadelahi
Journal of Micromechanics and Microengineering, 2016, Jahrgang 26, Nummer 3, Seite 035017
[8]
Giuseppe Grosso, Fabio Galvano, Antonio Mistretta, Stefano Marventano, Francesca Nolfo, Giorgio Calabrese, Silvio Buscemi, Filippo Drago, Umberto Veronesi, and Alessandro Scuderi
Oxidative Medicine and Cellular Longevity, 2013, Jahrgang 2013, Seite 1
[9]
Narayan V. Nimbkar and Fatimah Lateef
Medical Hypotheses, 2007, Jahrgang 68, Nummer 5, Seite 1126
[10]
Jacob P. Kunes, Katie S. Cordero-Koning, Lionel H. Lee, and Sean M. Lynch
Nutrition Research, 2009, Jahrgang 29, Nummer 2, Seite 114
[11]
Jane A. Leopold and Joseph Loscalzo
Free Radical Biology and Medicine, 2009, Jahrgang 47, Nummer 12, Seite 1673
[12]
Mislav Vrsalovic, Maruska Marusic Vrsalovic, Ana Vrsalovic Presecki, and Josip Lukac
Journal of Cardiovascular Pharmacology, 2007, Jahrgang 50, Nummer 4, Seite 462
[14]
Gediminas Cepinskas and John X Wilson
Journal of Clinical Biochemistry and Nutrition, 2008, Jahrgang 42, Nummer 3, Seite 175
[15]
T. Bengtsson, H. Karlsson, P. Gunnarsson, C. Skoglund, C. Elison, P. Leanderson, and M. Lindahl
Journal of Internal Medicine, 2008, Jahrgang 263, Nummer 5, Seite 558
[16]
Eva S. Wintergerst, Silvia Maggini, and Dietrich H. Hornig
Annals of Nutrition and Metabolism, 2006, Jahrgang 50, Nummer 2, Seite 85

Kommentare (0)