Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 386, Issue 10

Issues

Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase

Marina Bennati
  • Institut für Physikalische und Theoretische Chemie und BMRZ, J.W. Goethe-Universität Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt am Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Friedhelm Lendzian
  • Technische Universität Berlin, Institut für Chemie, Max-Volmer-Labor, Straße des 17. Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Schmittel
  • Universität Siegen, Organische Chemie I, Fachbereich 8, Adolf-Reichwein Str., D-57068 Siegen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hendrik Zipse
  • Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 München, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2005-10-12 | DOI: https://doi.org/10.1515/BC.2005.117

Abstract

Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.

Keywords: amino acid-based radicals; catalytic mechanism; density functional theory; high-field EPR/ENDOR; hydrogen abstraction; ribonucleotide reductase

References

About the article

Corresponding author


Published Online: 2005-10-12

Published in Print: 2005-10-01


Citation Information: Biological Chemistry, Volume 386, Issue 10, Pages 1007–1022, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2005.117.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Adriana M. Magherusan, Ang Zhou, Erik R. Farquhar, Max García-Melchor, Brendan Twamley, Lawrence Que, and Aidan R. McDonald
Angewandte Chemie, 2017
[2]
Adriana M. Magherusan, Ang Zhou, Erik R. Farquhar, Max García-Melchor, Brendan Twamley, Lawrence Que, and Aidan R. McDonald
Angewandte Chemie International Edition, 2017
[3]
Marcus Galander, Malin Uppsten, Ulla Uhlin, and Friedhelm Lendzian
Journal of Biological Chemistry, 2006, Volume 281, Number 42, Page 31743
[4]
Nina Voevodskaya, Friedhelm Lendzian, Oliver Sanganas, Alexander Grundmeier, Astrid Gräslund, and Michael Haumann
Journal of Biological Chemistry, 2009, Volume 284, Number 7, Page 4555
[5]
Kanchana R. Ravichandran, Alexander T. Taguchi, Yifeng Wei, Cecilia Tommos, Daniel G. Nocera, and JoAnne Stubbe
Journal of the American Chemical Society, 2016, Volume 138, Number 41, Page 13706
[6]
Ramona Kositzki, Stefan Mebs, Jennifer Marx, Julia J. Griese, Nils Schuth, Martin Högbom, Volker Schünemann, and Michael Haumann
Inorganic Chemistry, 2016, Volume 55, Number 19, Page 9869
[7]
Florian Achrainer and Hendrik Zipse
Molecules, 2014, Volume 19, Number 12, Page 21489
[8]
Ivan Dragičević, Danijela Barić, Borislav Kovačević, Bernard T. Golding, and David M. Smith
Chemistry - A European Journal, 2015, Volume 21, Number 16, Page 6132
[9]
Xiaohua Chen, Guangcai Ma, Weichao Sun, Hongjing Dai, Dong Xiao, Yanfang Zhang, Xin Qin, Yongjun Liu, and Yuxiang Bu
Journal of the American Chemical Society, 2014, Volume 136, Number 12, Page 4515
[10]
V. P. Denysenkov, T. F. Prisner, J. Stubbe, and M. Bennati
Proceedings of the National Academy of Sciences, 2006, Volume 103, Number 36, Page 13386
[11]
Johnny Hioe and Hendrik Zipse
Chemistry - A European Journal, 2012, Volume 18, Number 51, Page 16463
[12]
Michael Schmittel, Mukul Lal, Rupali Lal, Maik Röck, Anja Langels, Zvi Rappoport, Ahmad Basheer, Jens Schlirf, Hans-Jörg Deiseroth, Ulrich Flörke, and Georg Gescheidt
Tetrahedron, 2009, Volume 65, Number 52, Page 10842
[13]
Nils Leidel, Ana Popović-Bijelić, Kajsa G.V. Havelius, Petko Chernev, Nina Voevodskaya, Astrid Gräslund, and Michael Haumann
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2012, Volume 1817, Number 3, Page 430
[14]
Stanislaw F. Wnuk, Jaidev A. K. Penjarla, Thao Dang, Alexander M. Mebel, Thomas Nauser, and Christian Schöneich
Collection of Czechoslovak Chemical Communications, 2011, Volume 76, Number 10, Page 1223
[15]
Yuzo Fujikura, Pavla Kudlackova, Martin Vokurka, Jakub Krijt, and Zora Melkova
Nitric Oxide, 2009, Volume 20, Number 2, Page 114
[16]
Johnny Hioe and Hendrik Zipse
Faraday Discuss., 2010, Volume 145, Page 301
[17]
Johnny Hioe and Hendrik Zipse
Organic & Biomolecular Chemistry, 2010, Volume 8, Number 16, Page 3609
[18]
Olav Schiemann and Thomas F. Prisner
Quarterly Reviews of Biophysics, 2007, Volume 40, Number 01, Page 1

Comments (0)

Please log in or register to comment.
Log in