Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Thomas, Douglas D.

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2015: 1.607
Source Normalized Impact per Paper (SNIP) 2015: 0.751

See all formats and pricing
In This Section
Volume 386, Issue 11 (Nov 2005)


ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria

Christian Schlieker
  • Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
/ Hanswalter Zentgraf
  • Deutsches Krebsforschungszentrum – Angewandte Tumorvirologie, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
/ Petra Dersch
  • Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
/ Axel Mogk
  • Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
Published Online: 2005-11-24 | DOI: https://doi.org/10.1515/BC.2005.128


Hsp100/Clp proteins are key players in the protein quality control network of prokaryotic cells and function in the degradation and refolding of misfolded or aggregated proteins. Here we report the identification of a new class of Hsp100/Clp proteins, termed ClpV (virulent strain), that are present in bacteria interacting with eukaryotic cells, including human pathogens. The ClpV proteins are most similar to ClpB proteins within the Hsp100/Clp family, but cluster in a separate phylogenetic tree with a remarkable distance to ClpB. ClpV representatives from Salmonella typhimurium and enteropathogenic Escherichia coli form oligomeric assemblies and display ATP hydrolysis rates comparable to ClpB. However, unlike ClpB, both ClpV proteins failed to solubilize aggregated proteins. This lack of disaggregation activity correlated with the inability of ClpB model substrates to stimulate the ATPase activity of ClpV proteins, indicating differences in substrate selection. Furthermore, we show that clpV genes are generally organized in a conserved gene cluster, encoding a potential secretion system, and we demonstrate that increased levels of a dominant negative variant of either S. typhimurium or Yersinia pseudotuberculosis ClpV strongly reduce the ability of these pathogenic bacteria to invade epithelial cells. We propose a role of this novel and unique class of AAA+ proteins in bacteria-host cell interactions.

Keywords: chaperone; ClpB; Hsp100/Clp protein; protein disaggregation; virulence


About the article

Corresponding author

Received: July 13, 2005

Accepted: August 18, 2005

Published Online: 2005-11-24

Published in Print: 2005-11-01

Citation Information: Biological Chemistry, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2005.128. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Abderrahman Hachani, Thomas E Wood, and Alain Filloux
Current Opinion in Microbiology, 2016, Volume 29, Page 81
Ratnesh Chandra Mishra and Anil Grover
Critical Reviews in Biotechnology, 2015, Page 1
Sebastiàn Lòpez-Fernàndez, Paolo Sonego, Marco Moretto, Michael Pancher, Kristof Engelen, Ilaria Pertot, and Andrea Campisano
Frontiers in Microbiology, 2015, Volume 6
Shaohui Wang, Jianjun Dai, Qingmei Meng, Xiangan Han, Yue Han, Yichao Zhao, Denghui Yang, Chan Ding, and Shengqing Yu
Frontiers in Microbiology, 2014, Volume 5
Alistair B. Russell, Aaron G. Wexler, Brittany N. Harding, John C. Whitney, Alan J. Bohn, Young Ah Goo, Bao Q. Tran, Natasha A. Barry, Hongjin Zheng, S. Brook Peterson, Seemay Chou, Tamir Gonen, David R. Goodlett, Andrew L. Goodman, and Joseph D. Mougous
Cell Host & Microbe, 2014, Volume 16, Number 2, Page 227
Brian T. Ho, Tao G. Dong, and John J. Mekalanos
Cell Host & Microbe, 2014, Volume 15, Number 1, Page 9
Shana K Goffredi, Hana Yi, Qingpeng Zhang, Jane E Klann, Isabelle A Struve, Robert C Vrijenhoek, and C Titus Brown
The ISME Journal, 2014, Volume 8, Number 4, Page 908
Weipeng Zhang, Yao Wang, Yunhong Song, Tietao Wang, Shengjuan Xu, Zhong Peng, Xiaoli Lin, Lei Zhang, and Xihui Shen
Environmental Microbiology, 2013, Volume 15, Number 2, Page 557
Ji Liu, Ji-Tao Guo, Yong-Guo Li, Randal N. Johnston, Gui-Rong Liu, and Shu-Lin Liu
Journal of Basic Microbiology, 2013, Volume 53, Number 7, Page 600
Nadine S. Lossi, Eleni Manoli, Pete Simpson, Cerith Jones, Kailyn Hui, Rana Dajani, Sarah J. Coulthurst, Paul Freemont, and Alain Filloux
Molecular Microbiology, 2012, Volume 86, Number 2, Page 437
P. Velge, A. Wiedemann, M. Rosselin, N. Abed, Z. Boumart, A. M. Chaussé, O. Grépinet, F. Namdari, S. M. Roche, A. Rossignol, and I. Virlogeux-Payant
MicrobiologyOpen, 2012, Volume 1, Number 3, Page 243
Skye Hodson, Jacqueline J.T. Marshall, and Steven G. Burston
Journal of Structural Biology, 2012, Volume 179, Number 2, Page 161
P. G. Leiman, M. Basler, U. A. Ramagopal, J. B. Bonanno, J. M. Sauder, S. Pukatzki, S. K. Burley, S. C. Almo, and J. J. Mekalanos
Proceedings of the National Academy of Sciences, 2009, Volume 106, Number 11, Page 4154
Ross E. Dalbey and Andreas Kuhn
FEMS Microbiology Reviews, 2012, Volume 36, Number 6, Page 1023
Morgan E. DeSantis and James Shorter
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2012, Volume 1823, Number 1, Page 29
L. M. Iyer, D. Zhang, I. B. Rogozin, and L. Aravind
Nucleic Acids Research, 2011, Volume 39, Number 22, Page 9473
Mark A. Schell, Ricky L. Ulrich, Wilson J. Ribot, Ernst E. Brueggemann, Harry B. Hines, Dan Chen, Lyla Lipscomb, H. Stanley Kim, Jan Mrázek, William C. Nierman, and David DeShazer
Molecular Microbiology, 2007, Volume 64, Number 6, Page 1466
Lewis EH Bingle, Christopher M Bailey, and Mark J Pallen
Current Opinion in Microbiology, 2008, Volume 11, Number 1, Page 3
Min Wang, Zhe Luo, Hong Du, Shungao Xu, Bin Ni, Haifang Zhang, Xiumei Sheng, Huaxi Xu, and Xinxiang Huang
Current Microbiology, 2011, Volume 63, Number 1, Page 22
Christopher S. Hayes, Stephanie K. Aoki, and David A. Low
Annual Review of Genetics, 2010, Volume 44, Number 1, Page 71
Amanjot Singh and Anil Grover
Plant Molecular Biology, 2010, Volume 74, Number 4-5, Page 395
Molecular Plant Pathology, 2010, Page no
Gabriele Bönemann, Aleksandra Pietrosiuk, and Axel Mogk
Molecular Microbiology, 2010, Volume 76, Number 4, Page 815
Barbara Weber, Medisa Hasic, Chang Chen, Sun Nyunt Wai, and Debra L. Milton
Environmental Microbiology, 2009, Volume 11, Number 12, Page 3018
Jeffrey R. Barker, Audrey Chong, Tara D. Wehrly, Jieh-Juen Yu, Stephen A. Rodriguez, Jirong Liu, Jean Celli, Bernard P. Arulanandam, and Karl E. Klose
Molecular Microbiology, 2009, Volume 74, Number 6, Page 1459
Janine Kirstein, Noël Molière, David A. Dougan, and Kürşad Turgay
Nature Reviews Microbiology, 2009, Volume 7, Number 8, Page 589
Gabriele Bönemann, Aleksandra Pietrosiuk, Alexander Diemand, Hanswalter Zentgraf, and Axel Mogk
The EMBO Journal, 2009, Volume 28, Number 4, Page 315
Eric Cascales
EMBO reports, 2008, Volume 9, Number 8, Page 735
A. Filloux, A. Hachani, and S. Bleves
Microbiology, 2008, Volume 154, Number 6, Page 1570
Karin L. Meibom, Iharilalao Dubail, Marion Dupuis, Monique Barel, Juraj Lenco, Jiri Stulik, Igor Golovliov, Anders Sjöstedt, and Alain Charbit
Molecular Microbiology, 2008, Volume 67, Number 6, Page 1384
Joseph D. Mougous, Casey A. Gifford, Talia L. Ramsdell, and John J. Mekalanos
Nature Cell Biology, 2007, Volume 9, Number 7, Page 797
Michal Zolkiewski
Molecular Microbiology, 2006, Volume 61, Number 5, Page 1094
Susan M. Butler, Richard A. Festa, Michael J. Pearce, and K. Heran Darwin
Molecular Microbiology, 2006, Volume 60, Number 3, Page 553

Comments (0)

Please log in or register to comment.
Log in