Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 386, Issue 11


ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria

Christian Schlieker
  • Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hanswalter Zentgraf
  • Deutsches Krebsforschungszentrum – Angewandte Tumorvirologie, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petra Dersch / Axel Mogk
  • Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2005-11-24 | DOI: https://doi.org/10.1515/BC.2005.128


Hsp100/Clp proteins are key players in the protein quality control network of prokaryotic cells and function in the degradation and refolding of misfolded or aggregated proteins. Here we report the identification of a new class of Hsp100/Clp proteins, termed ClpV (virulent strain), that are present in bacteria interacting with eukaryotic cells, including human pathogens. The ClpV proteins are most similar to ClpB proteins within the Hsp100/Clp family, but cluster in a separate phylogenetic tree with a remarkable distance to ClpB. ClpV representatives from Salmonella typhimurium and enteropathogenic Escherichia coli form oligomeric assemblies and display ATP hydrolysis rates comparable to ClpB. However, unlike ClpB, both ClpV proteins failed to solubilize aggregated proteins. This lack of disaggregation activity correlated with the inability of ClpB model substrates to stimulate the ATPase activity of ClpV proteins, indicating differences in substrate selection. Furthermore, we show that clpV genes are generally organized in a conserved gene cluster, encoding a potential secretion system, and we demonstrate that increased levels of a dominant negative variant of either S. typhimurium or Yersinia pseudotuberculosis ClpV strongly reduce the ability of these pathogenic bacteria to invade epithelial cells. We propose a role of this novel and unique class of AAA+ proteins in bacteria-host cell interactions.

Keywords: chaperone; ClpB; Hsp100/Clp protein; protein disaggregation; virulence

About the article

Corresponding author

Received: July 13, 2005

Accepted: August 18, 2005

Published Online: 2005-11-24

Published in Print: 2005-11-01

Citation Information: Biological Chemistry, Volume 386, Issue 11, Pages 1115–1127, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2005.128.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yi Tang, Yujia Sun, Lingmin Zhao, Xiaojin Xu, Lixing Huang, Yingxue Qin, Yongquan Su, Ganfeng Yi, and Qingpi Yan
Fish & Shellfish Immunology, 2019, Volume 93, Page 344
Liyun Liu, Shuai Hao, Ruiting Lan, Guangxia Wang, Di Xiao, Hui Sun, Jianguo Xu, and B. A. McCormick
Infection and Immunity, 2015, Volume 83, Number 7, Page 2596
Jacqueline Corbitt, Jun Seok Yeo, C. Ian Davis, Michele LeRoux, Paul A. Wiggins, and Thomas J. Silhavy
Journal of Bacteriology, 2018, Volume 200, Number 11, Page e00744-17
Peter J. Hume, Vikash Singh, Anthony C. Davidson, and Vassilis Koronakis
Frontiers in Cellular and Infection Microbiology, 2017, Volume 7
Germán L. Rosano, Eduardo M. Bruch, and Eduardo A. Ceccarelli
Journal of Biological Chemistry, 2011, Volume 286, Number 34, Page 29671
Andreas Förster, Sara Planamente, Eleni Manoli, Nadine S. Lossi, Paul S. Freemont, and Alain Filloux
Journal of Biological Chemistry, 2014, Volume 289, Number 47, Page 33032
Aleksandra Pietrosiuk, Esther D. Lenherr, Sebastian Falk, Gabriele Bönemann, Jürgen Kopp, Hanswalter Zentgraf, Irmgard Sinning, and Axel Mogk
Journal of Biological Chemistry, 2011, Volume 286, Number 34, Page 30010
Angela R. Records
Molecular Plant-Microbe Interactions, 2011, Volume 24, Number 7, Page 751
Patricia Bernal, Luke P Allsopp, Alain Filloux, and María A Llamas
The ISME Journal, 2017, Volume 11, Number 4, Page 972
Carlos J. Blondel, Hee-Jeong Yang, Benjamín Castro, Sebastián Chiang, Cecilia S. Toro, Mercedes Zaldívar, Inés Contreras, Helene L. Andrews-Polymenis, Carlos A. Santiviago, and Michael Otto
PLoS ONE, 2010, Volume 5, Number 7, Page e11724
Abderrahman Hachani, Thomas E Wood, and Alain Filloux
Current Opinion in Microbiology, 2016, Volume 29, Page 81
Marek Basler
Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, Volume 370, Number 1679, Page 20150021
Ratnesh Chandra Mishra and Anil Grover
Critical Reviews in Biotechnology, 2015, Page 1
Sebastiàn Lòpez-Fernàndez, Paolo Sonego, Marco Moretto, Michael Pancher, Kristof Engelen, Ilaria Pertot, and Andrea Campisano
Frontiers in Microbiology, 2015, Volume 6
Shaohui Wang, Jianjun Dai, Qingmei Meng, Xiangan Han, Yue Han, Yichao Zhao, Denghui Yang, Chan Ding, and Shengqing Yu
Frontiers in Microbiology, 2014, Volume 5
Alistair B. Russell, Aaron G. Wexler, Brittany N. Harding, John C. Whitney, Alan J. Bohn, Young Ah Goo, Bao Q. Tran, Natasha A. Barry, Hongjin Zheng, S. Brook Peterson, Seemay Chou, Tamir Gonen, David R. Goodlett, Andrew L. Goodman, and Joseph D. Mougous
Cell Host & Microbe, 2014, Volume 16, Number 2, Page 227
Brian T. Ho, Tao G. Dong, and John J. Mekalanos
Cell Host & Microbe, 2014, Volume 15, Number 1, Page 9
Shana K Goffredi, Hana Yi, Qingpeng Zhang, Jane E Klann, Isabelle A Struve, Robert C Vrijenhoek, and C Titus Brown
The ISME Journal, 2014, Volume 8, Number 4, Page 908
Weipeng Zhang, Yao Wang, Yunhong Song, Tietao Wang, Shengjuan Xu, Zhong Peng, Xiaoli Lin, Lei Zhang, and Xihui Shen
Environmental Microbiology, 2013, Volume 15, Number 2, Page 557
Ji Liu, Ji-Tao Guo, Yong-Guo Li, Randal N. Johnston, Gui-Rong Liu, and Shu-Lin Liu
Journal of Basic Microbiology, 2013, Volume 53, Number 7, Page 600
Nadine S. Lossi, Eleni Manoli, Pete Simpson, Cerith Jones, Kailyn Hui, Rana Dajani, Sarah J. Coulthurst, Paul Freemont, and Alain Filloux
Molecular Microbiology, 2012, Volume 86, Number 2, Page 437
P. Velge, A. Wiedemann, M. Rosselin, N. Abed, Z. Boumart, A. M. Chaussé, O. Grépinet, F. Namdari, S. M. Roche, A. Rossignol, and I. Virlogeux-Payant
MicrobiologyOpen, 2012, Volume 1, Number 3, Page 243
Skye Hodson, Jacqueline J.T. Marshall, and Steven G. Burston
Journal of Structural Biology, 2012, Volume 179, Number 2, Page 161
P. G. Leiman, M. Basler, U. A. Ramagopal, J. B. Bonanno, J. M. Sauder, S. Pukatzki, S. K. Burley, S. C. Almo, and J. J. Mekalanos
Proceedings of the National Academy of Sciences, 2009, Volume 106, Number 11, Page 4154
Ross E. Dalbey and Andreas Kuhn
FEMS Microbiology Reviews, 2012, Volume 36, Number 6, Page 1023
Morgan E. DeSantis and James Shorter
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2012, Volume 1823, Number 1, Page 29
Lakshminarayan M. Iyer, Dapeng Zhang, Igor B. Rogozin, and L. Aravind
Nucleic Acids Research, 2011, Volume 39, Number 22, Page 9473
Mark A. Schell, Ricky L. Ulrich, Wilson J. Ribot, Ernst E. Brueggemann, Harry B. Hines, Dan Chen, Lyla Lipscomb, H. Stanley Kim, Jan Mrázek, William C. Nierman, and David DeShazer
Molecular Microbiology, 2007, Volume 64, Number 6, Page 1466
Sandra Schwarz, Rachel D. Hood, and Joseph D. Mougous
Trends in Microbiology, 2010, Volume 18, Number 12, Page 531
Lewis EH Bingle, Christopher M Bailey, and Mark J Pallen
Current Opinion in Microbiology, 2008, Volume 11, Number 1, Page 3
Min Wang, Zhe Luo, Hong Du, Shungao Xu, Bin Ni, Haifang Zhang, Xiumei Sheng, Huaxi Xu, and Xinxiang Huang
Current Microbiology, 2011, Volume 63, Number 1, Page 22
Christopher S. Hayes, Stephanie K. Aoki, and David A. Low
Annual Review of Genetics, 2010, Volume 44, Number 1, Page 71
Amanjot Singh and Anil Grover
Plant Molecular Biology, 2010, Volume 74, Number 4-5, Page 395
Molecular Plant Pathology, 2010, Page no
Gabriele Bönemann, Aleksandra Pietrosiuk, and Axel Mogk
Molecular Microbiology, 2010, Volume 76, Number 4, Page 815
Barbara Weber, Medisa Hasic, Chang Chen, Sun Nyunt Wai, and Debra L. Milton
Environmental Microbiology, 2009, Volume 11, Number 12, Page 3018
Jeffrey R. Barker, Audrey Chong, Tara D. Wehrly, Jieh-Juen Yu, Stephen A. Rodriguez, Jirong Liu, Jean Celli, Bernard P. Arulanandam, and Karl E. Klose
Molecular Microbiology, 2009, Volume 74, Number 6, Page 1459
Janine Kirstein, Noël Molière, David A. Dougan, and Kürşad Turgay
Nature Reviews Microbiology, 2009, Volume 7, Number 8, Page 589
Gabriele Bönemann, Aleksandra Pietrosiuk, Alexander Diemand, Hanswalter Zentgraf, and Axel Mogk
The EMBO Journal, 2009, Volume 28, Number 4, Page 315
Eric Cascales
EMBO reports, 2008, Volume 9, Number 8, Page 735
A. Filloux, A. Hachani, and S. Bleves
Microbiology, 2008, Volume 154, Number 6, Page 1570
Karin L. Meibom, Iharilalao Dubail, Marion Dupuis, Monique Barel, Juraj Lenco, Jiri Stulik, Igor Golovliov, Anders Sjöstedt, and Alain Charbit
Molecular Microbiology, 2008, Volume 67, Number 6, Page 1384
Joseph D. Mougous, Casey A. Gifford, Talia L. Ramsdell, and John J. Mekalanos
Nature Cell Biology, 2007, Volume 9, Number 7, Page 797
Michal Zolkiewski
Molecular Microbiology, 2006, Volume 61, Number 5, Page 1094
Susan M. Butler, Richard A. Festa, Michael J. Pearce, and K. Heran Darwin
Molecular Microbiology, 2006, Volume 60, Number 3, Page 553

Comments (0)

Please log in or register to comment.
Log in