Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 386, Issue 12


The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties

Andreas Vogel / Oliver Schilling
  • Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bettina Späth / Anita Marchfelder
Published Online: 2005-12-09 | DOI: https://doi.org/10.1515/BC.2005.142


tRNase Z is the endoribonuclease that generates the mature 3′-end of tRNA molecules by removal of the 3′-trailer elements of precursor tRNAs. This enzyme has been characterized from representatives of all three domains of life (Bacteria, Archaea and Eukarya), as well as from mitochondria and chloroplasts. tRNase Z enzymes come in two forms: short versions (280–360 amino acids in length), present in all three kingdoms, and long versions (750–930 amino acids), present only in eukaryotes. The recently solved crystal structure of the bacterial tRNase Z provides the structural basis for the understanding of central functional elements. The substrate is recognized by an exosite that protrudes from the main protein body and consists of a metallo-β-lactamase domain. Cleavage of the precursor tRNA occurs at the binuclear zinc site located in the other subunit of the functional homodimer. The first gene of the tRNase Z family was cloned in 2002. Since then a comprehensive set of data has been acquired concerning this new enzyme, including detailed functional studies on purified recombinant enzymes, mutagenesis studies and finally the determination of the crystal structure of three bacterial enzymes. This review summarizes the current knowledge about these exciting enzymes.

Keywords: elaC; metallo-β-lactamases; RNase BN; tRNA processing; tRNase Z; ZiPD

About the article

Corresponding author

Published Online: 2005-12-09

Published in Print: 2005-12-01

Citation Information: Biological Chemistry, Volume 386, Issue 12, Pages 1253–1264, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2005.142.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ilaria Pettinati, Pawel Grzechnik, Claudia Ribeiro de Almeida, Jurgen Brem, Michael A McDonough, Somdutta Dhir, Nick J Proudfoot, and Christopher J Schofield
eLife, 2018, Volume 7
A. Lulla, V. Lulla, and A. Merits
Journal of Virology, 2012, Volume 86, Number 1, Page 553
Béatrice Clouet-d'Orval, Manon Batista, Marie Bouvier, Yves Quentin, Gwennaele Fichant, Anita Marchfelder, and Lisa-Katharina Maier
FEMS Microbiology Reviews, 2018
Lisa J. Scherer, Richard Frank, and John J. Rossi
Nucleic Acids Research, 2007, Volume 35, Number 8, Page 2620
Tanmay Dutta and Murray P. Deutscher
Journal of Biological Chemistry, 2010, Volume 285, Number 30, Page 22874
Tanmay Dutta, Arun Malhotra, and Murray P. Deutscher
Journal of Biological Chemistry, 2012, Volume 287, Number 42, Page 35747
Dmitriy Minond, Mare Cudic, Nina Bionda, Marc Giulianotti, Laura Maida, Richard A. Houghten, and Gregg B. Fields
Journal of Biological Chemistry, 2012, Volume 287, Number 43, Page 36473
Tanmay Dutta and Murray P. Deutscher
Journal of Biological Chemistry, 2009, Volume 284, Number 23, Page 15425
Joachim Forner, Bärbel Weber, Sabine Thuss, Steffen Wildum, and Stefan Binder
Nucleic Acids Research, 2007, Volume 35, Number 11, Page 3676
Birgit Lung, Anja Zemann, Monika J. Madej, Markus Schuelke, Sandra Techritz, Stephanie Ruf, Ralph Bock, and Alexander Hüttenhofer
Nucleic Acids Research, 2006, Volume 34, Number 14, Page 3842
Jinyu Liu, Linting Huang, Yirong Wang, and Ying Huang
Microbiology, 2017, Volume 163, Number 1, Page 75
Christiane Rammelt and Walter Rossmanith
RNA Biology, 2016, Volume 13, Number 12, Page 1182
A. Maxwell Burroughs and L. Aravind
Nucleic Acids Research, 2016, Volume 44, Number 18, Page 8525
Hannes Ruwe, Gongwei Wang, Sandra Gusewski, and Christian Schmitz-Linneweber
Nucleic Acids Research, 2016, Page gkw466
Thalia Salinas-Giegé, Richard Giegé, and Philippe Giegé
International Journal of Molecular Sciences, 2015, Volume 16, Number 3, Page 4518
Ilaria Pettinati, Jürgen Brem, Sook Y. Lee, Peter J. McHugh, and Christopher J. Schofield
Trends in Biochemical Sciences, 2016, Volume 41, Number 4, Page 338
E. B. Kramer and A. K. Hopper
Proceedings of the National Academy of Sciences, 2013, Volume 110, Number 52, Page 21042
Per Johnsson, Leonard Lipovich, Dan Grandér, and Kevin V. Morris
Biochimica et Biophysica Acta (BBA) - General Subjects, 2014, Volume 1840, Number 3, Page 1063
Tuan Long, Dong Guo, Dong He, Wenjie Shen, and Xianghua Li
Journal of Integrative Plant Biology, 2013, Volume 55, Number 11, Page 1104
Xie Xie, Veronica Dubrovskaya, Nancy Yacoub, Joanna Walska, Tara Gleason, Katherine Reid, and Edward B. Dubrovsky
Developmental Biology, 2013, Volume 381, Number 2, Page 324
Mallory A. Havens, Ashley A. Reich, Dominik M. Duelli, and Michelle L. Hastings
Nucleic Acids Research, 2012, Volume 40, Number 10, Page 4626
Susan Fischer, Simona John von Freyend, Anice Sabag-Daigle, Charles J. Daniels, Thorsten Allers, and Anita Marchfelder
Extremophiles, 2012, Volume 16, Number 2, Page 333
Rachid Daoud, Lise Forget, and B. Franz Lang
Nucleic Acids Research, 2012, Volume 40, Number 4, Page 1728
Annette Hölzle, Britta Stoll, Thomas Schnattinger, Uwe Schöning, Brian Tjaden, and Anita Marchfelder
Biochimie, 2012, Volume 94, Number 4, Page 940
Walter Rossmanith
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, Volume 1819, Number 9-10, Page 1017
Jeremy E. Wilusz, Susan M. Freier, and David L. Spector
Cell, 2008, Volume 135, Number 5, Page 919
Zbigniew Dominski and William F. Marzluff
Gene, 2007, Volume 396, Number 2, Page 373
Reyad A. Elbarbary, Hiroaki Takaku, and Masayuki Nashimoto
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2008, Volume 1784, Number 12, Page 2079
Nils G. Walter
Molecular Cell, 2007, Volume 28, Number 6, Page 923
Maria Rosa Garcia-Silva, Magali Frugier, Juan Pablo Tosar, Alejandro Correa-Dominguez, Lysangela Ronalte-Alves, Adriana Parodi-Talice, Carlos Rovira, Carlos Robello, Samuel Goldenberg, and Alfonso Cayota
Molecular and Biochemical Parasitology, 2010, Volume 171, Number 2, Page 64
Xie Xie, Veronica A. Dubrovskaya, and Edward B. Dubrovsky
Insect Biochemistry and Molecular Biology, 2011, Volume 41, Number 3, Page 167
Ciarán Condon
Current Opinion in Microbiology, 2007, Volume 10, Number 3, Page 271
Hong Li
Current Opinion in Structural Biology, 2007, Volume 17, Number 3, Page 293
Zbigniew Dominski
Wiley Interdisciplinary Reviews - RNA, 2010, Volume 1, Number 2, Page 325
Rong-Zhen Liao, Fahmi Himo, Jian-Guo Yu, and Ruo-Zhuang Liu
European Journal of Inorganic Chemistry, 2009, Volume 2009, Number 20, Page 2967
S. G. Ozanick, X. Wang, M. Costanzo, R. L. Brost, C. Boone, and J. T. Anderson
Nucleic Acids Research, 2009, Volume 37, Number 1, Page 298
Bettina Späth, Sylvia Schubert, Annika Lieberoth, Florian Settele, Stefanie Schütz, Susan Fischer, and Anita Marchfelder
Archives of Microbiology, 2008, Volume 190, Number 3, Page 301
Yulia Redko, Inés Li de laSierra-Gallay, and Ciarán Condon
Nature Reviews Microbiology, 2007, Volume 5, Number 4, Page 278
Alexei V. Kazantsev and Norman R. Pace
Nature Reviews Microbiology, 2006, Volume 4, Number 10, Page 729

Comments (0)

Please log in or register to comment.
Log in