Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 9, 2005

The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties

  • Andreas Vogel , Oliver Schilling , Bettina Späth and Anita Marchfelder
From the journal Biological Chemistry

Abstract

tRNase Z is the endoribonuclease that generates the mature 3′-end of tRNA molecules by removal of the 3′-trailer elements of precursor tRNAs. This enzyme has been characterized from representatives of all three domains of life (Bacteria, Archaea and Eukarya), as well as from mitochondria and chloroplasts. tRNase Z enzymes come in two forms: short versions (280–360 amino acids in length), present in all three kingdoms, and long versions (750–930 amino acids), present only in eukaryotes. The recently solved crystal structure of the bacterial tRNase Z provides the structural basis for the understanding of central functional elements. The substrate is recognized by an exosite that protrudes from the main protein body and consists of a metallo-β-lactamase domain. Cleavage of the precursor tRNA occurs at the binuclear zinc site located in the other subunit of the functional homodimer. The first gene of the tRNase Z family was cloned in 2002. Since then a comprehensive set of data has been acquired concerning this new enzyme, including detailed functional studies on purified recombinant enzymes, mutagenesis studies and finally the determination of the crystal structure of three bacterial enzymes. This review summarizes the current knowledge about these exciting enzymes.

:

Corresponding author

References

Abelson, J., Trotta, C.R., and Li, H. (1998). tRNA splicing. J. Biol. Chem.273, 12685–12688.10.1074/jbc.273.21.12685Search in Google Scholar

Aravind, L. (1999). An evolutionary classification of the metallo-β-lactamase fold proteins. In Silico Biol.1, 69–91.Search in Google Scholar

Bikoff, E.K. and Gefter, M.L. (1975). In vitro synthesis of transfer RNA. I. Purification of required components. J. Biol. Chem.250, 6240–6247.Search in Google Scholar

Bikoff, E.K., LaRue, B.F., and Gefter, M.L. (1975). In vitro synthesis of transfer RNA. II. Identification of required enzymatic activities. J. Biol. Chem.250, 6248–6255.Search in Google Scholar

Björk, G.R. (1995). Biosynthesis and function of modified nucleosides. In: tRNA: Structure, Biosynthesis, and Function, D. Söll and U. RajBhandary, eds. (Washington, DC, USA: ASM Press), pp. 165–205.Search in Google Scholar

Bonatto, D., Revers, L.F., Brendel, M., and Henriques, J.A. (2005). The eukaryotic Pso2/Snm1/Artemis proteins and their function as genomic and cellular caretakers. Braz. J. Med. Biol. Res.38, 321–334.10.1590/S0100-879X2005000300002Search in Google Scholar

Cameron, A.D., Ridderstrom, M., Olin, B., and Mannervik, B. (1999). Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Struct. Fold. Des.7, 1067–1078.10.1016/S0969-2126(99)80174-9Search in Google Scholar

Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frère, J.M., et al. (1995). The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J.14, 4914–4921.10.1002/j.1460-2075.1995.tb00174.xSearch in Google Scholar

Castaño, J.G., Tobian, J.A., and Zasloff, M. (1985). Purification and characterization of an endonuclease from Xenopus laevis ovaries which accurately processes the 3′ terminus of human pre-tRNA-Met(i) (3′ pre-tRNase). J. Biol. Chem.260, 9002–9008.10.1016/S0021-9258(17)39449-8Search in Google Scholar

Chen, Y., Beck, A., Davenport, C., Chen, Y., Shattuck, D., and Tavtigian, S.T. (2005). Characterization of TRZ1, a yeast homolog of the human candidate prostate cancer susceptibility gene ELAC2. BMC Mol. Biol.6, 12.10.1186/1471-2199-6-12Search in Google Scholar

Cherniack, A.D., Garriga, G., Kittle, J.D. Jr., Akins, R.A., and Lambowitz, A.M. (1990). Function of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing requires an idiosyncratic domain not found in other synthetases. Cell62, 745–755.10.1016/0092-8674(90)90119-YSearch in Google Scholar

Condon, C. and Putzer, H. (2002). The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res.30, 5339–5346.10.1093/nar/gkf691Search in Google Scholar

Crawford, P.A., Yang, K.W., Sharma, N., Bennett, B., and Crowder, M.W. (2005). Spectroscopic studies on cobalt(II)-substituted metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria. Biochemistry44, 5168–5176.10.1021/bi047463sSearch in Google Scholar

Daiyasu, H., Osaka, K., Ishino, Y., and Toh, H. (2001). Expansion of the zinc metallo-hydrolase family of the β-lactamase fold. FEBS Lett.503, 1–6.10.1016/S0014-5793(01)02686-2Search in Google Scholar

de la Sierra-Gallay, I.L., Pellegrini, O., and Condon, C. (2005). Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature433, 657–661.10.1038/nature03284Search in Google Scholar PubMed

de Seny, D., Heinz, U., Wommer, S., Kiefer, M., Meyer-Klaucke, W., Galleni, M., et al. (2001). Metal ion binding and coordination geometry for wild type and mutants of metallo-β-lactamase from Bacillus cereus 569/H/9 (BcII): a combined thermodynamic, kinetic, and spectroscopic approach. J. Biol. Chem.276, 45065–45078.10.1074/jbc.M106447200Search in Google Scholar PubMed

de Seny, D., Prosperi-Meys, C., Bebrone, C., Rossolini, G.M., Page, M.I., Noel, P., et al. (2002). Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-β-lactamase. Biochem. J.363, 687–696.10.1042/bj3630687Search in Google Scholar

Dez, C. and Tollervey, D. (2004). Ribosome synthesis meets the cell cycle. Curr. Opin. Microbiol.7, 631–637.10.1016/j.mib.2004.10.007Search in Google Scholar PubMed

Dubrovsky, E.B. (2003). Juvenile hormone regulated gene expression in Drosophila melanogaster. Recent Res. Dev. Mol. Cell. Biol.3, 527–547.Search in Google Scholar

Dubrovsky, E.B., Dubrovskaya, V.A., Bilderback, A.L., and Berger, E.M. (2000). The isolation of two juvenile hormone-inducible genes in Drosophila melanogaster. Dev. Biol.224, 486–495.10.1006/dbio.2000.9800Search in Google Scholar PubMed

Dubrovsky, E.B., Dubrovskaya, V.A., Levinger, L., Schiffer, S., and Marchfelder, A. (2004). Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3′ ends in vivo. Nucleic Acids Res.32, 255–262.10.1093/nar/gkh182Search in Google Scholar PubMed PubMed Central

Ezraty, B., Dahlgren, B., and Deutscher, M.P. (2005). The RNase Z homologue encoded by Escherichia coli elaC gene is RNase BN. J. Biol. Chem.280, 16542–16545.10.1074/jbc.C500098200Search in Google Scholar PubMed

Forster, A.C. and Altman, S. (1990). External guide sequences for an RNA enzyme. Science249, 783–786.10.1126/science.1697102Search in Google Scholar PubMed

Frank, D.N. and Pace, N.R. (1998). Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu. Rev. Biochem.67, 153–180.10.1146/annurev.biochem.67.1.153Search in Google Scholar PubMed

Frazao, C., Silva, G., Gomes, C.M., Matias, P., Coelho, R., Sieker, L., et al. (2000). Structure of a dioxygen reduction enzyme from Desulfovibrio gigas.Nat. Struct. Biol.7, 1041–1045.Search in Google Scholar

Garau, G., Lemaire, D., Vernet, T., Dideberg, O., and Di Guilmi, A.M. (2005). Crystal structure of phosphorylcholine esterase domain of the virulence factor choline-binding protein e from Streptococcus pneumoniae: new structural features among the metallo-β-lactamase superfamily. J. Biol. Chem.280, 28591–28600.10.1074/jbc.M502744200Search in Google Scholar PubMed

Hanic-Joyce, P.J., Spencer, D.F., and Gray, M.W. (1990). In vitro processing of transcripts containing novel tRNA-like sequences (‘t-elements’) encoded by wheat mitochondrial DNA. Plant Mol. Biol.15, 551–559.10.1007/BF00017830Search in Google Scholar PubMed

Heinz, U. and Adolph, H.W. (2004). Metallo-β-lactamases: two binding sites for one catalytic metal ion? Cell. Mol. Life Sci.61, 2827–2839.10.1007/s00018-004-4214-9Search in Google Scholar PubMed

Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., et al. (2003). Global analysis of protein localization in budding yeast. Nature425, 686–691.10.1038/nature02026Search in Google Scholar PubMed

Ishii, R., Minagawa, A., Takaku, H., Takagi, M., Nashimoto, M., and Yokoyama, S. (2005). Crystal structure of the tRNA 3′ processing endoribonuclease tRNase Z from Thermotoga maritima. J. Biol. Chem.280, 14138–14144.10.1074/jbc.M500355200Search in Google Scholar PubMed

Kamper, U., Kuck, U., Cherniack, A.D., and Lambowitz, A.M. (1992). The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing. Mol. Cell. Biol.12, 499–511.Search in Google Scholar

Kobayashi, M. and Shimizu, S. (1999). Cobalt proteins. Eur. J. Biochem.261, 1–9.10.1046/j.1432-1327.1999.00186.xSearch in Google Scholar PubMed

Korver, W., Guevara, C., Chen, Y., Neuteboom, S., Bookstein, R., Tavtigian, S., et al. (2003). The product of the candidate prostate cancer susceptibility gene ELAC2 interacts with the γ-tubulin complex. Int. J. Cancer104, 283–288.10.1002/ijc.10945Search in Google Scholar PubMed

Kostelecky, B., Pohl, E., Vogel, A., Schilling, O., and Meyer-Klaucke, W. (2005). The crystal structure of the zinc phosphodiesterase from Escherichia coli provides insight into substrate binding and cooperativity of ElaC family proteins. J. Bacteriol., in press.Search in Google Scholar

Labouesse, M. (1990). The yeast mitochondrial leucyl-tRNA synthetase is a splicing factor for the excision of several group I introns. Mol. Gen. Genet.224, 209–221.10.1007/BF00271554Search in Google Scholar PubMed

Levinger, L., Vasisht, V., Greene, V., Bourne, R., Birk, A., and Kolla, S. (1995). Sequence and structure requirements for Drosophila tRNA 5′- and 3′-end processing. J. Biol. Chem.270, 18903–18909.10.1074/jbc.270.32.18903Search in Google Scholar PubMed

Ma, Y., Schwarz, K., and Lieber, M.R. (2005). The Artemis: DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst.)4, 845–851.10.1016/j.dnarep.2005.04.013Search in Google Scholar PubMed

Maret, W. and Vallee, B.L. (1993). Cobalt as probe and label of proteins. Methods Enzymol.226, 52–71.Search in Google Scholar

Mayer, M., Schiffer, S., and Marchfelder, A. (2000). tRNA 3′-pro-cessing in plants: nuclear and mitochondrial activities differ. Biochemistry39, 2096–2105.10.1021/bi992253eSearch in Google Scholar PubMed

Meima, M.E., Biondi, R.M., and Schaap, P. (2002). Identification of a novel type of cGMP phosphodiesterase that is defective in the chemotactic stmF mutants. Mol. Biol. Cell13, 3870–3877.10.1091/mbc.e02-05-0285Search in Google Scholar

Minagawa, A., Takaku, H., Takagi, M., and Nashimoto, M. (2004). A novel endonucleolytic mechanism to generate the CCA 3'-termini of tRNA molecules in Thermotoga maritima. J. Biol. Chem.279, 15688–15697.10.1074/jbc.M313951200Search in Google Scholar

Mohan, A., Whyte, S., Wang, X., Nashimoto, M., and Levinger, L. (1999). The 3′ end CCA of mature tRNA is an antideterminant for eukaryotic 3′-tRNase. RNA5, 245–256.10.1017/S1355838299981256Search in Google Scholar

Moshous, D., Callebaut, I., de Chasseval, R., Poinsignon, C., Villey, I., Fischer, A., et al. (2003). The V(D)J recombination/DNA repair factor artemis belongs to the metallo-β-lactamase family and constitutes a critical developmental check-point of the lymphoid system. Ann. NY Acad. Sci.987, 150–157.10.1111/j.1749-6632.2003.tb06043.xSearch in Google Scholar

Nashimoto, M. (1995). Conversion of mammalian tRNA 3′ processing endoribonuclease to four-base-recognizing RNA cutters. Nucleic Acids Res.23, 3642–3647.10.1093/nar/23.18.3642Search in Google Scholar

Nashimoto, M. (1997). Distribution of both lengths and 5′ terminal nucleotides of mammalian pre-tRNA 3′ trailers reflects properties of 3′ processing endoribonuclease. Nucleic Acids Res.25, 1148–1154.10.1093/nar/25.6.1148Search in Google Scholar

Nashimoto, M. (2000). Anomalous RNA substrates for mammalian tRNA 3′ processing endoribonuclease. FEBS Lett.472, 179–186.10.1016/S0014-5793(00)01462-9Search in Google Scholar

Nashimoto, M., Geary, S., Tamura, M., and Kaspar, R. (1998). RNA heptamers that direct RNA cleavage by mammalian tRNA 3' processing endoribonuclease. Nucleic Acids Res.26, 2565–2572.10.1093/nar/26.11.2565Search in Google Scholar PubMed PubMed Central

Nashimoto, M., Tamura, M., and Kaspar, R.L. (1999a). Minimum requirements for substrates of mammalian tRNA 3′ processing endoribonuclease. Biochemistry38, 12089–12096.10.1021/bi9911942Search in Google Scholar PubMed

Nashimoto, M., Tamura, M., and Kaspar, R.L. (1999b). Selection of cleavage site by mammalian tRNA 3′ processing endoribonuclease. J. Mol. Biol.287, 727–740.10.1006/jmbi.1999.2639Search in Google Scholar PubMed

Nashimoto, M., Wesemann, D.R., Geary, S., Tamura, M., and Kaspar, R.L. (1999c). Long 5′ leaders inhibit removal of a 3′ trailer from a precursor tRNA by mammalian tRNA 3′ processing endoribonuclease. Nucleic Acids Res.27, 2770–2776.10.1093/nar/27.13.2770Search in Google Scholar

Nikawa, J., Sass, P., and Wigler, M. (1987). Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. Biol.7, 3629–3636.Search in Google Scholar

Oeffinger, M. and Tollervey, D. (2003). Yeast Nop15p is an RNA-binding protein required for pre-rRNA processing and cytokinesis. EMBO J.22, 6573–6583.10.1093/emboj/cdg616Search in Google Scholar

Oommen, A., Li, X.Q., and Gegenheimer, P. (1992). Cleavage specificity of chloroplast and nuclear tRNA 3′-processing nucleases. Mol. Cell. Biol.12, 865–875.Search in Google Scholar

Orellano, E.G., Girardini, J.E., Cricco, J.A., Ceccarelli, E.A., and Vila, A.J. (1998). Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II. Biochemistry37, 10173–10180.10.1021/bi980309jSearch in Google Scholar

Pellegrini, O., Nezzar, J., Marchfelder, A., Putzer, H., and Condon, C. (2003). Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis. EMBO J.22, 4534–4543.10.1093/emboj/cdg435Search in Google Scholar

Peng, W.T., Robinson, M.D., Mnaimneh, S., Krogan, N.J., Cagney, G., Morris, Q., et al. (2003). A panoramic view of yeast noncoding RNA processing. Cell113, 919–933.10.1016/S0092-8674(03)00466-5Search in Google Scholar

Ryan, K., Calvo, O., and Manley, J.L. (2004). Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA10, 565–573.10.1261/rna.5214404Search in Google Scholar PubMed PubMed Central

Schedl, P., Primakoff, P., and Roberts, J. (1975). Processing of E. coli tRNA precursors. Brookhaven Symp. Biol.26, 53–76.Search in Google Scholar

Schiffer, S., Helm, M., Théobald-Dietrich, A., Giegé, R., and Marchfelder, A. (2001). The plant tRNA 3′ processing enzyme has a broad substrate spectrum. Biochemistry40, 8264–8272.10.1021/bi0101953Search in Google Scholar PubMed

Schiffer, S., Rösch, S., and Marchfelder, A. (2002). Assigning a function to a conserved group of proteins: the tRNA 3′-pro-cessing enzymes. EMBO J.21, 2769–2777.10.1093/emboj/21.11.2769Search in Google Scholar PubMed PubMed Central

Schiffer, S., Rösch, S., and Marchfelder, A. (2003). Recombinant RNase Z does not recognize CCA as part of the tRNA and its cleavage efficiency is influenced by acceptor stem length. Biol. Chem.384, 333–342.10.1515/BC.2003.039Search in Google Scholar PubMed

Schilling, O., Wenzel, N., Naylor, M., Vogel, A., Crowder, M., Makaroff, C., et al. (2003). Flexible metal binding of the metallo-β-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo. Biochemistry42, 11777–11786.10.1021/bi034672oSearch in Google Scholar PubMed

Schilling, O., Rüggeberg, S., Vogel, A., Rittner, N., Weichert, S., Schmidt, S., et al. (2004). Characterization of an Escherichia coli elaC deletion mutant. Biochem. Biophys. Res. Commun.320, 1365–1373.10.1016/j.bbrc.2004.05.227Search in Google Scholar PubMed

Schilling, O., Späth, B., Kostelecky, B., Marchfelder, A., Meyer-Klaucke, W., and Vogel, A. (2005a). Exosite modules guide substrate recognition in the ZiPD/ElaC protein family. J. Biol. Chem.280, 17857–17862.10.1074/jbc.M500591200Search in Google Scholar PubMed

Schilling, O., Vogel, A., Kostelecky, B., Natal da Luz, H., Spemann, D., Späth, B., et al. (2005b). Zinc- and iron-dependent cytosolic metallo-β-lactamase domain proteins exhibit similar zinc-binding affinities, independent of an atypical glutamate at the metal-binding site. Biochem. J.385, 145–153.10.1042/BJ20040773Search in Google Scholar PubMed PubMed Central

Shibata, H.S., Takaku, H., Takagi, M., and Nashimoto, M. (2005). The T loop structure is dispensable for substrate recognition by tRNase ZL. J. Biol. Chem.280, 22326–22334.10.1074/jbc.M502048200Search in Google Scholar PubMed

Smith, M.M. and Levitan, D.J. (2004). The Caenorhabditis elegans homolog of the putative prostate cancer susceptibility gene ELAC2, hoe-1, plays a role in germline proliferation. Dev. Biol.266, 151–160.10.1016/j.ydbio.2003.10.016Search in Google Scholar PubMed

Späth, B., Kirchner, S., Schubert, S., Meinlschmidt, P., Aymanns, S., Nezzar, J., et al. (2005). Elucidation of the functional modules of the tRNA 3′ endonuclease (tRNase Z). J. Biol. Chem.280, 35440–35447.10.1074/jbc.M506418200Search in Google Scholar PubMed

Takaku, H., Minagawa, A., Takagi, M., and Nashimoto, M. (2003). A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res.31, 2272–2278.10.1093/nar/gkg337Search in Google Scholar PubMed PubMed Central

Takaku, H., Minagawa, A., Takagi, M., and Nashimoto, M. (2004). The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity. Nucleic Acids Res.32, 4429–4438.10.1093/nar/gkh774Search in Google Scholar PubMed PubMed Central

Tavtigian, S.V., Simard, J., Teng, D.H., Abtin, V., Baumgard, M., Beck, A., et al. (2001). A candidate prostate cancer susceptibility gene at chromosome 17p. Nat. Genet.27, 172–180.10.1038/84808Search in Google Scholar PubMed

Vogel, A., Schilling, O., Niecke, M., Bettmer, J., and Meyer-Klaucke, W. (2002). ElaC encodes a novel binuclear zinc phosphodiesterase. J. Biol. Chem.277, 29078–29085.10.1074/jbc.M112047200Search in Google Scholar PubMed

Vogel, A., Schilling, O., and Meyer-Klaucke, W. (2004). Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II. Biochemistry43, 10379–10386.10.1021/bi049703+Search in Google Scholar

Wang, Z., Fast, W., Valentine, A.M., and Benkovic, S.J. (1999). Metallo-β-lactamase: structure and mechanism. Curr. Opin. Chem. Biol.3, 614–622.10.1016/S1367-5931(99)00017-4Search in Google Scholar

Weiner, A.M. (2004). tRNA maturation: RNA polymerization without a nucleic acid template. Curr. Biol.14, R883–885.10.1016/j.cub.2004.09.069Search in Google Scholar

Wen, T., Oussenko, I.A., Pellegrini, O., Bechhofer, D.H., and Condon, C. (2005). Ribonuclease PH plays a major role in the exonucleolytic maturation of CCA-containing tRNA precursors in Bacillus subtilis. Nucleic Acids Res.33, 3636–3643.10.1093/nar/gki675Search in Google Scholar

Yegian, C.D., Stent, G.S., and Martin, E.M. (1966). Intracellular condition of Escherichia coli transfer RNA. Proc. Natl. Acad. Sci. USA55, 839–846.10.1073/pnas.55.4.839Search in Google Scholar

Yoo, C.J. and Wolin, S.L. (1997). The yeast La protein is required for the 3′ endonucleolytic cleavage that matures tRNA precursors. Cell89, 393–402.10.1016/S0092-8674(00)80220-2Search in Google Scholar

Zareen, N., Yan, H., Hopkinson, A., and Levinger, L. (2005). Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding. J. Mol. Biol.350, 189–199.10.1016/j.jmb.2005.04.073Search in Google Scholar PubMed

Published Online: 2005-12-09
Published in Print: 2005-12-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.142/html
Scroll to top button