Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 386, Issue 9 (Sep 2005)

Issues

Improving the levels of essential amino acids and sulfur metabolites in plants

Gad Galili / Rachel Amir
  • Plant Science Laboratory, Migal – Galilee Technology Centre, P.O. Box 831, Kiryat Shmona 11016, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Hoefgen
  • Department of Molecular Physiology, Max Plank Institute for Molecular Physiology, Am Mühlenberg 1, D-14476 Golm, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Holger Hesse
  • Department of Molecular Physiology, Max Plank Institute for Molecular Physiology, Am Mühlenberg 1, D-14476 Golm, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2005-09-09 | DOI: https://doi.org/10.1515/BC.2005.097

Abstract

Plants represent the major source of food for humans, either directly or indirectly through their use as livestock feeds. Plant foods are not nutritionally balanced because they contain low proportions of a number of essential metabolites, such as vitamins and amino acids, which humans and a significant proportion of their livestock cannot produce on their own. Among the essential amino acids needed in human diets, Lys, Met, Thr and Trp are considered as the most important because they are present in only low levels in plant foods. In the present review, we discuss approaches to improve the levels of the essential amino acids Lys and Met, as well as of sulfur metabolites, in plants using metabolic engineering approaches. We also focus on specific examples for which a deeper understanding of the regulation of metabolic networks in plants is needed for tailor-made improvements of amino acid metabolism with minimal interference in plant growth and productivity.

Keywords: cysteine; essential amino acids; lysine; metabolic engineering; methionine; nutritional quality

References

  • Altenbach, S., Kuo., B., Staraci, C.C., Pearson, L.C., Wainwright, K.W., and Georgescu, A. (1992). Accumulation of Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol. Biol. 18 , 235 –245.CrossrefGoogle Scholar

  • Amir, R., Hacham, Y., and Galili, G. (2002). Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci. 7 , 153 –156.CrossrefGoogle Scholar

  • Anthony, J., Brown, W., Buhr, D., Ronhovde, G., Genovesi, D., Lane, T., Yingling, R., Aves, K., Rosato, M., and Anderson, P. (1997). Transgenic maize with elevated 10 kDa zein and methionine. In: Sulfur Metabolism in Higher Plants: Molecular, Ecophysiological and Nutritional Aspects, C.W. Cram, L.J. De Kok, I. Stulen, C. Brunold, H. Rennenberg, eds. (Leiden, The Netherlands: Backhuys Publishers), pp. 295–297.Google Scholar

  • Arruda, P., Kemper, E.L., Papes, F., and Leite, A. (2000). Regulation of lysine catabolism in higher plants. Trends Plant Sci. 5 , 324 –330.CrossrefGoogle Scholar

  • Avraham, T. and Amir, R. (2005). Methionine and threonine regulate the branching point of their biosynthesis pathways and thus controlling the level of each other. Transgenic Res. 14 , 299 –311.CrossrefGoogle Scholar

  • Avraham, T., Badani, H., Galili, S., and Amir, R. (2005). Enhanced levels of methionine and cysteine in transgenic alfalfa ( Medicago sativa L.) plants overexpressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotech. J. 3 , 71 –80.Google Scholar

  • Awazuhara, M., Hirai, M.Y., Hayashi, H., Chino, M., Naito, S., and Fujiwara, T. (2000). Effects of sulphur and nitrogen nutrition on O -acetyl-l-serine contents in Arabidopsis thaliana . In: Sulphur Nutrition and Sulphur Assimilation in Higher Plants, C. Brunold, J.-C. Davidan, L. De Kok, H. Rennenberg, and I. Stulen, eds. (Bern, Switzerland; Paul Haupt Publishers), pp. 331–333.Google Scholar

  • Azevedo, R.A., Damerval, C., Landry, J., Lea, P.J., Bellato, C.M., Meinhardt, L.W., Le Guilloux, M., Delhaye, S., Toro, A.A., Gaziola, S.A., and Berdejo, D.B.A. (2003). Regulation of maize lysine metabolism and endosperm protein synthesis by opaque and floury mutations. Eur. J. Biochem. 270 , 4898 –4908.Google Scholar

  • Azevedo, R.A., Damerval, C., Lea, P.J., Landry, J., Bellato, C.M., Meinhardt, L.W., Le Guilloux, M., Delhaye, S., Toro, A.A., Gaziola, S.A., Varisi, V.A., and Gratão, P.L. (2004a). Endosperm protein synthesis and lysine metabolism in distinct opaque maize seed mutants. Funct. Plant Biol. 31 , 339 –348.CrossrefGoogle Scholar

  • Azevedo, R., Lea, P., Damerval, C., Landry, J., Bellato, C., Meinhardt, L., Le Guilloux, M., Delhaye, S., Varisi, V., Gaziola, S., Gratão, P., and Toro, A. (2004b). Regulation of lysine metabolism and endosperm protein synthesis by the opaque-5 and opaque-7 maize mutations. J. Agric. Food Chem. 52 , 4865 –4871.CrossrefGoogle Scholar

  • Bagga, S., Adams, H., Kemp, J.D., and Sengupta-Gopalan, C. (1995). Accumulation of 15-kilodalton zein in novel protein bodies in transgenic tobacco. Plant Physiol. 107 , 13 –23.Google Scholar

  • Bagga, S., Adams, H.P., Rodriguez, F.D., Kemp, J.D., and Sengupta-Gopalan, C. (1997). Coexpression of the maize δ-zein and β-zein genes results in stable accumulation of δ-zein in endoplasmic reticulum-derived protein bodies formed by β-zein. Plant Cell 9 , 1683 –1696.Google Scholar

  • Bagga, S., Ross, J., and Sengupta-Gopalan, C. (2003). Co-expression of methionine rich zein genes and genes for cystathionine-γ synthase, a key enzyme in the methionine synthesis for increasing methionine levels in alfalfa. In: Abstracts of the 7th International Congress of Plant Molecular Biology, Barcelona, Spain (Athens, GA, USA: The International Society for Plant Molecular Biology), p. 388.Google Scholar

  • Bagga, S., Armendaris, A., Klypina, N., Ray, I., Ghoshroy, S., Endress, M., Sutton, D., Kemp, J.D., and Sengupta-Gopalan, C. (2004). Genetic engineering ruminal stable high methionine protein in the foliage of alfalfa. Plant Sci. 166 , 273 –283.Google Scholar

  • Bartlem, D., Lambein, I., Okamoto, T., Itaya, A., Uda, Y., Kijima, N., Tamaki, Y., Nambara, E., and Naito, S. (2000). Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis . Plant Physiol. 123 , 101 –110.CrossrefGoogle Scholar

  • Bartolome, B., Mendez, J.D., Armentia, A., Vallverdu, A., and Palacios, R. (1997). Allergens from Brazil nut: immunochemical characterization. Allergol. Immunopathol. (Madr.) 25 , 135 –144.Google Scholar

  • Bellucci, M., Lazzari, B., Viotti, A., and Arcioni, S. (1997). Differential expression of the gamma zein in Medicago sativa, Lotus coriculatus and Nicotiana tabacum . Plant Sci. 127 , 161 –169.Google Scholar

  • Bellucci, M., Alpini, A., and Arcioni, S. (2002). Zein accumulation in forage species ( Lotus coriculatus and Medicago sativa ) and co-expression of the γ-zein:KDEL and β-zein:KDEL polypeptides in tobacco leaf. Plant Cell Rep. 20 , 848 –856.CrossrefGoogle Scholar

  • Berkowitz, O., Wirtz, M., Wolf, A., Kuhlmann, J., and Hell, R. (2002). Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana . J. Biol. Chem. 277 , 30629 –30634.Google Scholar

  • Bick, J.A., Setterdahl, A.T., Knaff, D.B., Chen, Y., Pitcher, L.H., Zilinskas, B.A., and Leustek, T. (2001). Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress. Biochemistry 40 , 9040 –9048.CrossrefGoogle Scholar

  • Blaszczyk, A., Brodzik, R., and Sirko, A. (1999). Increased resistance to oxidative stress in transgenic tobacco plants over-expressing bacterial serine acetyltransferase. Plant J. 20 , 237 –243.CrossrefGoogle Scholar

  • Bogdanova, N. and Hell, R. (1997). Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana . Plant J. 11 , 251 –262.CrossrefGoogle Scholar

  • Bolchi, A., Petrucco, S., Tenca, P.L., Foroni, C., and Ottonello, S. (1999). Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by l-cysteine. Plant Mol. Biol. 39 , 527 –537.CrossrefGoogle Scholar

  • Bourgis, F., Roje, S., Nuccio, M.L., Fisher, D.B., Tarczynski, M.C., Li, C., Herschbach, C., Rennenberg, H., Pimenta, M.J., Shen, T.L., Gage, D.A., and Hanson, A.D. (1999). S -Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11 , 1485 –1498.CrossrefGoogle Scholar

  • Brunold, C. and Suter, M. (1982). Intracellular localization of serine acetyltransferase in spinach leaves. Planta 155 , 321 –327.Google Scholar

  • Chiaiese, P., Ohkama-Ohtsu, N., Molvig, L., Godfree, R., Dove, H., Hocart, C., Fujiwara, T., Higgins, T.J., and Tabe, L.M. (2004). Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. J. Exp. Bot. 55 , 1889 –1901.CrossrefGoogle Scholar

  • Chiba, Y., Shikawa, M., Kijima, F., Tyson, R.H., Kim, J., Yamamoto, A., Nambara, E., Leustek, T., Wallsgrove, R.M., and Naito, S. (1999). Evidence for autoregulation of cystathionine γ-synthase mRNA stability in Arabidopsis . Science 286 , 1371 –1374.Google Scholar

  • Chiba, Y., Sakurai, R., Yoshino, M., Ominato, K., Ishikawa, M., Onouchi, H., and Naito, S. (2003). S -Adenosyl-l-methionine is an effector in the posttranscriptional autoregulation of the cystathionine γ-synthase gene in Arabidopsis . Proc. Natl. Acad. Sci. USA 100 , 10225 –10230.CrossrefGoogle Scholar

  • Clarkson, D.T., Diogo, E., and Amancio, S. (1999). Uptake and assimilation of sulphate by sulphur deficient Zea mays cells: the role of O -acetyl-l-serine in the interaction between nitrogen and sulphur assimilatory pathways. Plant Physiol. Biochem. 37 , 283 –290.CrossrefGoogle Scholar

  • Cohen, G.N. and Saint-Girons, I. (1987). Biosynthesis of threonine, lysine and methionine. In: Escherichia coli and Salmonella typhimurium : Cellular and Molecular Biology, F.C. Neidhardt, ed. (Washington, DC, USA: American Society for Microbiology), pp. 429–444.Google Scholar

  • Curien, G., Job, D., Douce, R., and Dumas, R. (1998). Allosteric activation of Arabidopsis threonine synthase by S -adenosylmethionine. Biochemistry 37 , 13212 –13221.CrossrefGoogle Scholar

  • Curien, G., Ravanel, S., and Dumas, R. (2003). A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana . Eur. J. Biochem. 270 , 4615 –4627.Google Scholar

  • Demidov, D., Horstmann, C., Meixner, M., Pickard, T., Saalbach, I., Galili, G., and Muntz, K. (2003). Additive effects of the feed-back insensitive bacterial aspartate kinase and theBrazil nut 2S albumin on the methionine content of transgenic narbon bean ( Vicia narbonensis L.). Mol. Breeding 11 , 187 –201.CrossrefGoogle Scholar

  • Denk, D. and Bock, A. (1987). L-Cysteine biosynthesis in Escherichia-coli – nucleotide-sequence and expression of the serine acetyltransferase ( Cyse ) gene from the wild-type and a cysteine-excreting mutant. J. Gen. Microbiol. 133 , 515 –525.Google Scholar

  • Di, R., Kim, J., Martin, M.N., Leustek, T., Jhoo, J., Ho, C.T., and Tumer, N.E. (2003). Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine. J. Agric. Food Chem. 51 , 5695 –5702.CrossrefGoogle Scholar

  • Dominguez-Solis, J.R., Gutierrez-Alcala, G., Vega, J.M., Romero, L.C., and Gotor, C. (2001). The cytosolic O -acetylserine(thiol)lyase gene is regulated by heavy metals andcan function in cadmium tolerance. J. Biol. Chem. 276 , 31474 –31474.Google Scholar

  • Droux, M., Gakiere, B., Denis, L., Ravanel, S., Tabe, L., Lappartient, A.G., and Job, D. (2000). Methionine biosynthesis in plants: Biochemical and regulatory aspects. In: Sulfur Nutrition and Sulfur Assimilation in Higher Plants, C. Brunold, J.-C. Davidan, L. De Kok, H. Rennenberg, and I. Stulen, eds. (Bern, Switzerland: Paul Haupt Publishers), pp. 73–92.Google Scholar

  • Ealing, P.M., Hancock, K.R., and White, D.W.R. (1994). Expression of the pea albumin 1 gene in transgenic white clover and tobacco. Transgenic Res. 3 , 344 –354.Google Scholar

  • Falco, S.C., Guida, T., Locke, M., Mauvais, J., Sandres, C., Ward, R.T., and Webber, P. (1995). Transgenic canola and soybean seeds with increased lysine. Biotechnology 13 , 577 –582.CrossrefGoogle Scholar

  • Forsyth, J.L., Beaudoin, F., Halford, N.G., Sessions, R.B., Clarke, A.R., and Shewry, P.R. (2005). Design, expression and characterisation of lysine-rich forms of the barley seed protein CI-2. Biochim. Biophys. Acta 1747 , 221 –227.Google Scholar

  • Gakiere, B., Denis, L., Droux, M., Ravanel, S., Douce, R., and Job, D. (2000). Methionine synthesis in higher plants: sense strategy applied to cystathionine γ-synthase and cystathionine β-lyase in Arabidopsis thaliana . In: Sulfur Nutrition and Sulfur Assimilation in Higher Plants, C. Brunold, J.-C. Davidan, L. De Kok, H. Rennenberg, and I. Stulen, eds. (Bern, Switzerland: Paul Haupt Publishers), pp. 313–315.Google Scholar

  • Galili, G. (1995). Regulation of lysine and threonine synthesis. Plant Cell 7 , 899 –906.CrossrefGoogle Scholar

  • Galili, G. (2002). New insights into the regulation and functional significance of lysine metabolism in plants. Annu. Rev. Plant Physiol. Mol. Biol. 53 , 27 –43.CrossrefGoogle Scholar

  • Galili, G. and Herman, E.M. (1997). Protein bodies: storage vacuoles in seeds. Adv. Bot. Res. 25 , 113 –140.CrossrefGoogle Scholar

  • Galili, G. and Höfgen, R. (2002). Metabolic engineering of amino acids and storage proteins in plants. Metab. Eng. 4 , 3 –11.CrossrefGoogle Scholar

  • Galili, G., Tang, G., Zhu, X., and Gakiere, B. (2001). Lysine catabolism: a stress and development super-regulated metabolic pathway. Curr. Opin. Plant Biol. 4 , 261 –266.CrossrefGoogle Scholar

  • Gamrasni, D., Matityahu, I., and Amir, R. (2005). Aggregates formed as a result of the expression of yeast Met2 gene in transgenic tobacco plants stimulate the production of stress-protective metabolites and increased the plants tolerance to heat stress. Mol. Breed. 15 , 65 –74.CrossrefGoogle Scholar

  • Golan, A., Avraham, T., Matityahu, I., Badani, H., Galili, S., and Amir, R. (2005). Soluble methionine enhanced the accumulation of 15 kDa zein, a methionine rich storage protein, in BY2 cells and in alfalfa transgenic plants but not in transgenic tobacco plants. J. Exp. Bot., in press.Google Scholar

  • Guenoune, D., Amir, R., Badani, H., Wolf, S., and Galili, S. (2003). Coexpression of the soybean vegetative storage protein β subunit (S-VSPβ) either with the bacterial feedback-insensitive dihydrodipicolinate synthase or with S-VSPα stabilizes the S-VSPβ transgene protein and enhances lysine production in transgenic tobacco plants. Transgenic Res. 12 , 123 –126.Google Scholar

  • Gutierrez-Marcos, J.F., Roberts, M.A., Campbell, E.I., and Wray, J.L. (1996). Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and ‘APS reductase’ activity. Proc. Natl. Acad. Sci. USA 93 , 13377 –13382.CrossrefGoogle Scholar

  • Hacham, Y., Avraham, T., and Amir, R. (2002). The N-terminal region of Arabidopsis cystathionine γ-synthase plays an important regulatory role in methionine metabolism. Plant Physiol. 128 , 454 –462.CrossrefGoogle Scholar

  • Hacham, Y., Gophna, U., and Amir, R. (2003). In vivo analysis of various substrates utilized by cystathionine γ-synthase and O -acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol. Biol. Evol. 20 , 1513 –1520.CrossrefGoogle Scholar

  • Hagan, N.D., Upadhyaya, N., Tabe, L.M., and Higgins, T.J. (2003). The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J. 34 , 1 –11.CrossrefGoogle Scholar

  • Harada, E., Choi, Y.E., Tsuchisaka, A., Obata, H., and Sano, H. (2001). Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J. Plant Physiol. 158 , 655 –661.Google Scholar

  • Harms, K., von Ballmoos, P., Brunold, C., Höfgen, R., and Hesse, H. (2000). Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J. 22 , 335 –343.CrossrefGoogle Scholar

  • Hatzfeld, Y., Maruyama, A., Schmidt, A., Noji, M., Ishizawa, K., and Saito, K. (2000). β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis . Plant Physiol. 123 , 1163 –1171.Google Scholar

  • Hawkesford, M.J. (2000). Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J. Exp. Bot. 51 , 131 –138.Google Scholar

  • Hawkesford, M.J. (2003). Transporter gene families in plants: the sulphate transporter gene family – redundancy or specialization? Physiol. Plantar. 117 , 155 –163.Google Scholar

  • Heiss, S., Schafer, H.J., Haag-Kerwer, A., and Rausch, T. (1999). Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol. Biol. 39 , 847 –857.CrossrefGoogle Scholar

  • Hell, R., Jost, R., Berkowitz, O., and Wirtz, M. (2002). Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana . Amino Acids 22 , 245 –257.CrossrefGoogle Scholar

  • Hesse, H. and Höfgen, R. (2001). Application of Genomics in Agriculture. In: Molecular Analysis of Plant Adaptation to the Environment, M.J. Hawkesford and P. Buchner, eds. (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 61–79.Google Scholar

  • Hesse, H. and Hoefgen, R. (2003). Molecular aspects of methionine biosynthesis. Trends Plant Sci. 8 , 259 –262.CrossrefGoogle Scholar

  • Hesse, H., Lipke, J., Altmann, T., and Höfgen, R. (1999). Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase ( O -acetylserine-(thiol)lyase) from Arabidopsis thaliana . Amino Acids 16 , 113 –131.CrossrefGoogle Scholar

  • Hesse, H., Kreft, O., Maimann, S., Zeh, M., Willmitzer, L., and Höfgen, R. (2001). Approaches towards understanding methionine biosynthesis in higher plants. Amino Acids 20 , 281 –289.CrossrefGoogle Scholar

  • Hesse, H., Trachsel, N., Suter, M., Kopriva, S., von Ballmoos, P., Rennenberg, H., and Brunold, C. (2003). Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots. J. Exp. Bot. 54 , 1701 –1709.CrossrefGoogle Scholar

  • Hesse, H., Kreft, O., Maimann, S., Zeh, M., and Hoefgen, R. (2004a). Current understanding of the regulation of methionine biosynthesis in plants. J. Exp. Bot. 55 , 1799 –1808.CrossrefGoogle Scholar

  • Hesse, H., Nikiforova, V., Gakiere, B., and Hoefgen, R. (2004b). Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J. Exp. Bot. 55 , 1283 –1292.CrossrefGoogle Scholar

  • Hirai, M.Y., Fujiwara, T., Chino, M., and Naito, S. (1995). Effects of sulfate concentrations on the expression of a soybean seed storage protein gene and its reversibility in transgenic Arabidopsis thaliana . Plant Cell Physiol. 36 , 1331 –1339.Google Scholar

  • Höfgen, R., Kreft, O., Willmitzer, L., and Hesse, H. (2001). Manipulation of thiol contents in plants. Amino Acids 20 , 291 –299.CrossrefGoogle Scholar

  • Hopkins, L., Parmar, S., Błaszczyk, A., Hesse, H., Hoefgen, R., and Hawkesford, M.J. (2005). O -Acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato. Plant Physiol. 138 , 433 –440.Google Scholar

  • Inba, K., Fujiwara, T., Hayashi, H., Chino, M., Komeda, Y., and Naito, S. (1994). Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Temporal and spatial patterns of soluble methionine accumulation. Plant Physiol. 104 , 881 –887.CrossrefGoogle Scholar

  • Inoue, K., Noji, M., and Saito, K. (1999). Determination of the sites required for the allosteric inhibition of serine acetyltransferase by l-cysteine in plants. Eur. J. Biochem. 266 , 220 –227.Google Scholar

  • Jacquot, J.P., Gelhaye, E., Rouhier, N., Corbier, C., Didierjean, C., and Aubry, A. (2002). Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem. Pharmacol. 64 , 1065 –1069.CrossrefGoogle Scholar

  • Jung, R. and Falco, S.C. (2000). Transgenic corn with an improved amino acid composition. In: 8th International Symposium on Plant Seeds, Gatersleben, Germany.Google Scholar

  • Jung, R., Martino-Catt, S., Towsend, J., and Beach, L. (1997). Expression of a sulfur rich protein in soybean seeds causes an altered seed protein composition. In: 5th International Congress of Plant Molecular Biology, Vol. 15 (Singapore: Kluwer Academic Publishers), p. 307.Google Scholar

  • Karchi, H., Shaul, O., and Galili, G. (1993). Seed specific expression of a bacterial desensitized aspartate kinase increases the production of seed threonine and methionine in transgenic tobacco. Plant J. 3 , 721 –727.CrossrefGoogle Scholar

  • Karchi, H., Shaul, O., and Galili, G. (1994). Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc. Natl. Acad. Sci. USA 91 , 2577 –2581.CrossrefGoogle Scholar

  • Karchi, H., Miron, D., Ben-Yaacov, S., and Galili, G. (1995). The lysine-dependent stimulation of lysine catabolism in tobacco seeds requires calcium and protein phosphorylation. Plant Cell 7 , 1963 –1970.CrossrefGoogle Scholar

  • Kelly, J.D. and Hefle, S.L. (2000). 2S methionine-rich protein (SSA) from sunflower seed is an IgE-binding protein. Allergy 55 , 556 –560.CrossrefGoogle Scholar

  • Kemper, E.L., Cord-Neto, G., Capella, A.N., Goncalves-Butruile, M., Azevedo, R.A., and Arruda, P. (1998). Structure and regulation of the bifunctional enzyme lysine-oxoglutarate reductase-saccharopine dehydrogenase in maize. Eur. J. Biochem. 253 , 720 –729.Google Scholar

  • Khan, M.R., Ceriotti, A., Tabe, L., Aryan, A., McNabb, W., Moore, A., Craig, S., Spencer, D., and Higgins, T.J. (1996). Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover ( Trifolium subterraneum L.). Transgenic Res. 5 , 179 –185.CrossrefGoogle Scholar

  • Kim, H., Hirai, M.Y., Hayashi, H., Chino, M., Naito, S., and Fujiwara, T. (1999). Role of O -acetyl-l-serine in the coordinated regulation of the expression of a soybean seed storage-gene by sulfur and nitrogen nutrition. Planta 209 , 282 –289.Google Scholar

  • Kim, J., Cetiner, S., and Jaynes, J.M. (1992). Enhancing the Nutritional Quality of Crop Plants: Design, Construction, and Expression of an Artificial Plant Storage Protein Gene (New York, USA: Van Nostrand Reinhold).Google Scholar

  • Kim, J., Lee, M., Chalam, R., Martin, M.N., Leustek, T., and Boerjan, W. (2002). Constitutive overexpression of cystathionine γ-synthase in Arabidopsis thaliana leads to accumulation of soluble methionine and S -methylmethionine. Plant Physiol. 128 , 95 –107.CrossrefGoogle Scholar

  • Kocsis, M.G., Ranocha, P., Gage, D.A., Simon, E.S., Rhodes, D., Peel, G.J., Mellema, S., Saito, K., Awazuhara, M., Li, C.J., et al. (2003). Insertional inactivation of the methionine S -methyltransferase gene eliminates the S -methylmethionine cycle and increases the methylation ratio. Plant Physiol. 131 , 1808 –1815.Google Scholar

  • Kopriva, S., Buchert, T., Fritz, G., Suter, M., Weber, M., Benda, R., Schaller, J., Feller, U., Schurmann, P., Schunemann, V., et al. (2001). Plant adenosine 5′-phospho sulfate reductase is a novel iron-sulfur protein. J. Biol. Chem. 276 , 42881 –42886.Google Scholar

  • Kopriva, S., Suter, M., von Ballmoos, P., Hesse, H., Krahenbuhl, U., Rennenberg, H., and Brunold, C. (2002). Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor . Plant Physiol. 130 , 1406 –1413.CrossrefGoogle Scholar

  • Koprivova, A., Suter, M., Op den Camp, R., Brunold, C., and Kopriva, S. (2000). Regulation of sulfate assimilation by nitrogen in Arabidopsis . Plant Physiol. 122 , 737 –746.CrossrefGoogle Scholar

  • Kredich, N.M. (1993). Gene regulation of sulphur assimilation. In: Sulphur Nutrition and Assimilation in Higher Plants, L.J. De Kok, I. Stulen, H. Rennenberg, C. Brunold, W.E. Rauser, eds. (The Hague, Netherlands: Academic Publishing), pp. 37–45.Google Scholar

  • Kreft, O., Hoefgen, R., and Hesse, H. (2003). Functional analysis of cystathionine γ-synthase in genetically engineered potato plants. Plant Physiol. 131 , 1843 –1854.Google Scholar

  • Lambein, I., Chiba, Y., Onouchi, H., and Naito, S. (2003). Decay kinetics of autogenously regulated CGS1 mRNA that codes for cystathionine γ-synthase in Arabidopsis thaliana . Plant Cell Physiol. 44 , 893 –900.Google Scholar

  • Lee, M., Martin, M.N., Hudson, A.O., Lee, J., Muhitch, M.J., and Leustek, T. (2005). Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in Arabidopsis thaliana . Plant J. 41 , 685 –696.CrossrefGoogle Scholar

  • Leustek, T., Martin, M.N., Bick, J.A., and Davies, J.P. (2000). Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 , 141 –165.CrossrefGoogle Scholar

  • Matityahu, I., Kachan, L., Bar Ilan, Y., and Amir, R. (2005). Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibit enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress. Amino Acids, in press.Google Scholar

  • Matthews, B.F. (1999). Lysine, threonine and methionine biosynthesis. In: Plant Amino Acids: Biochemistry and Biotechnology, B.K. Singh, ed. (New York, USA: Marcel Dekker), pp. 205–225.Google Scholar

  • Mazur, B., Krebbers, E., and Tingey, S. (1999). Gene discovery and product development for grain quality traits. Science 285 , 372 –375.Google Scholar

  • Molvig, L., Tabe, L.M., Eggum, B.O., Moore, A., Craig, S., Spencer, D., and Higgins, T.J.V. (1997). Enhanced methionine level and increased nutritive value of seeds of transgenic lupins ( Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA 94 , 8393 –8398.CrossrefGoogle Scholar

  • Muntz, K. (1997). How does the seed's sulphur metabolism react on high level formation of foreign methionine rich proteins in transgenic narbon bean ( Vicia narbonensis L.)? In: The 39th NIBB Conference: Dynamic Aspects of Seed Maturation and Germination (Okazaki, Japan: National Institute for Basic Biology), pp. 14–15.Google Scholar

  • Naito, S., Hirai, M.Y., Chino, M., and Komeda, Y. (1994). Expression of a soybean ( Glycine max [L.] Merr.) seed storage protein gene in transgenic Arabidopsis thaliana and its response to nutritional stress and to abscisic acid mutations. Plant Physiol. 104 , 497 –503.CrossrefGoogle Scholar

  • Nakamori, S., Kobayashi, S.I., Kobayashi, C., and Takagi, H. (1998). Overproduction of l-cysteine and l-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl. Environ. Microbiol. 64 , 1607 –1611.Google Scholar

  • Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H., and Hoefgen, R. (2003). Transcriptome analysis of sulfur depletion in Arabidopsis thaliana : interlacing of biosynthetic pathways provides response specificity. Plant J. 33 , 633 –650.CrossrefGoogle Scholar

  • Nikiforova, V.J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M.J., Hesse, H., and Hoefgen, R. (2005). Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol. 138 , 304 –318.Google Scholar

  • Noctor, G., Gomez, L., Vanacker, H., and Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot. 53 , 1283 –1304.CrossrefGoogle Scholar

  • Noji, M. and Saito, K. (2002). Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Amino Acids 22 , 231 –243.CrossrefGoogle Scholar

  • Noji, M., Inoue, K., Kimura, N., Gouda, A., and Saito, K. (1998). Isoform-dependent differences in feedback regulation and subcellular localizaton of serine acetyltransferase involvedin cysteine biosynthesis from Arabidopsis thaliana . J. Biol. Chem. 273 , 32739 –32745.Google Scholar

  • Noji, M., Saito, M., Nakamura, M., Aono, M., Saji, H., and Saito, K. (2001). Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol. 126 , 973 –980.CrossrefGoogle Scholar

  • Nudler, E. and Mironov, A.S. (2004). The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29 , 11 –17.CrossrefGoogle Scholar

  • Onouchi, H., Lambein, I., Sakurai, R., Suzuki, A., Chiba, Y., and Naito, S. (2004). Autoregulation of the gene for cystathionine γ-synthase in Arabidopsis : post-transcriptional regulation induced by S -adenosylmethionine. Biochem. Soc. Trans. 32 , 597 –600.CrossrefGoogle Scholar

  • Perl, A., Shaul, O., and Galili, G. (1992). Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts. Plant Mol. Biol. 19 , 815 –823.CrossrefGoogle Scholar

  • Ravanel, S., Gakiere, B., Job, D., and Douce, R. (1998a). The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA 95 , 7805 –7812.CrossrefGoogle Scholar

  • Ravanel, S., Gakiere, B., Job, D., and Douce, R. (1998b). Cystathionine γ-synthase from Arabidopsis thaliana : purification and biochemical characterization of the recombinant enzyme overexpressed in Escherichia coli . Biochem. J. 331 , 639 –648.Google Scholar

  • Riemenschneider, A., Riedel, K., Hoefgen, R., Papenbrock, J., and Hesse, H. (2005). Impact of reduced O -acetylserine(thiol)lyase isoform contents on potato plant metabolism. Plant Physiol. 137 , 892 –900.Google Scholar

  • Rodionov, D.A., Vitreschak, A.G., Mironov, A.A., and Gelfand, M.S. (2003). Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res. 31 , 6748 –6757.CrossrefGoogle Scholar

  • Roesler, K.R. and Rao, A.G. (1999). Conformation and stability of barley chymotrypsin inhibitor-2 (CI-2) mutants containing multiple lysine substitutions. Protein Eng. 12 , 967 –973.CrossrefGoogle Scholar

  • Roesler, K.R. and Rao, A.G. (2000). A single disulfide bond restores thermodynamic and proteolytic stability to an extensively mutated protein. Protein Sci. 9 , 1642 –1650.CrossrefGoogle Scholar

  • Ruffet, M.L., Lebrun, M., Droux, M., and Douce, R. (1995). Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. Eur. J. Biochem. 227 , 500 –509.Google Scholar

  • Saalbach, I., Pickard, T., Machemehl, F., Saalbach, G., Schieder, O., and Muntz K. (1994). A chimeric gene encoding methionine rich 2S albumin of the Brazil nut ( Bertholletia excelsa H.B.K.) is stably expressed and inherited in trangenic grain legumes. Mol. Gen. Gen. 242 , 226 –236.CrossrefGoogle Scholar

  • Saito, K. (2000). Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr. Opin. Plant Biol. 3 , 188 –195.CrossrefGoogle Scholar

  • Saito, K., Tatsuguchi, K., Takagi, Y., and Murakoshi, I. (1994). Isolation and characterization of a cDNa that encodes a putative mitochondrion-localizing isoform of cysteine synthase ( O -acetyserine(thiol)lyase) from Spinacea oleracea . J. Biol. Chem. 269 , 28187 –28192.Google Scholar

  • Schmidt, A. and Jäger, K. (1992). Open questions about sulfur metabolism in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43 , 325 –349.CrossrefGoogle Scholar

  • Schurmann, P. and Jacquot, J.P. (2000). Plant thioredoxin systems revisited. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 , 371 –400.CrossrefGoogle Scholar

  • Sharma, S.B., Hancock, K.R., Ealing, P.M., and White, D.W.R. (1998). Expression of a sulfur-rich maize seed storage protein, delta-zein, in white clover ( Trifolium repens ) to improve forage quality. Mol. Breed. 4 , 435 –448.CrossrefGoogle Scholar

  • Shaul, O. and Galili, G. (1992). Increased lysine synthesis in transgenic tobacco plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J. 2 , 203 –209.CrossrefGoogle Scholar

  • Sirko, A., Blaszczyk, A., and Liszewska, F. (2004). Overproduction of SAT and/or OASTL in transgenic plants: a survey of effects. J. Exp. Bot. 55 , 1881 –1888.CrossrefGoogle Scholar

  • Smith, I.K. (1972). Studies of l-cysteine biosynthetic enzymes in Phaseolus vulgaris L. Plant Physiol. 50 , 477 –479.CrossrefGoogle Scholar

  • Stipanuk, M.H. (2004). Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr. 24 , 539 –577.CrossrefGoogle Scholar

  • Sudarsan, N., Wickiser, J.K., Nakamura, S., Ebert, M.S., and Breaker, R.R. (2003). An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. 17 , 2688 –2697.CrossrefGoogle Scholar

  • Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A. (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134 , 1536 –1545.CrossrefGoogle Scholar

  • Suter, M., von Ballmoos, P., Kopriva, S., den Camp, R.O., Schaller, J., Kuhlemeier, C., Schurmann, P., and Brunold, C. (2000). Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes. J. Biol. Chem. 275 , 930 –936.Google Scholar

  • Tabe, L. and Higgins, T.J.V. (1998). Engineering plant protein composition for improved nutrition. Trends Plant Sci. 3 , 282 –286.CrossrefGoogle Scholar

  • Tabe, L.M. and Droux, M. (2002). Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol. 128 , 1137 –1148.CrossrefGoogle Scholar

  • Tabe, L.M., Wardley-Richardson, T., Ceriotti, A., Aryan, A., McNabb, W., Moore, A., and Higgins, J. (1995). A biotechnological approach to improving the nutritive value of alfalfa. J. Anim. Sci. 73 , 2752 –2759.Google Scholar

  • Takahashi, H., Yamazaki, M., Sasakura, N., Watanabe, A., Leustek, T., de Almeida Engler, J., Engler, G., Van Montagu, M., and Saito, K. (1997). Regulation of cysteine biosynthesis in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA 94 , 11102 –11107.CrossrefGoogle Scholar

  • Thomas, D. and Surdin-Kerjan, Y. (1997). Metabolism of sulfur amino acids in Saccharomyces cerevisiae . Microbiol. Mol. Biol. Rev. 61 , 503 –532.Google Scholar

  • Tsakraklides, G., Martin, M., Chalam, R., Tarczynski, M.C., Schmidt, A., and Leustek, T. (2002). Sulphate reduction is increased in transgenic Arabidopsis thaliana expressing 59-adenylysulphate reductase from Pseudomonas aeruginosa . Plant J. 32 , 879 –889.CrossrefGoogle Scholar

  • Urano, Y., Manabe, T., Noji, M., and Saito, K. (2000). Molecular cloning and functional characterization of cDNAs encoding cysteine synthase and serine acetyltransferase that may be responsible for high cellular cysteine content in Allium tuberosum . Gene 257 , 269 –277.Google Scholar

  • Vauclare, P., Kopriva, S., Fell, D., Suter, M., Sticher, L., von Ballmoos, P., Krahenbuhl, U., den Camp, R.O., and Brunold, C. (2002). Flux control of sulphate assimilation in Arabidopsis thaliana : adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control bythiols. Plant J. 31 , 729 –740.CrossrefGoogle Scholar

  • Wandelt, C.I., Rafiqul, M., Khan, I., Craig, S., Schroeder, H.E., Spencer, D., and Higgins, T.J.V. (1992). Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J. 2 , 181 –192.Google Scholar

  • Warrilow, A.G.S. and Hawkesford, M.J. (1998). Separation, subcellular location and influence of sulphur nutrition on isoforms of cysteine synthase in spinach. J. Exp. Bot. 49 , 1625 –1636.CrossrefGoogle Scholar

  • Warrilow, A.G.S. and Hawkesford, M.J. (2000). Cysteine synthase ( O -acetylserine(thiol)lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. J. Exp. Bot. 51 , 985 –993.CrossrefGoogle Scholar

  • Wirtz, M. and Hell, R. (2003). Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 24 , 195 –203.CrossrefGoogle Scholar

  • Wirtz, M., Berkowitz, O., Droux, M., and Hell, R. (2001). The cysteine synthase complex from plants – mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction. Eur. J. Biochem. 268 , 686 –693.Google Scholar

  • Yamaguchi, Y., Nakamura, T., Harada, E., Koizumi, N., and Sano, H. (1999). Differential accumulation of transcripts encoding sulfur assimilation enzymes upon sulfur and or nitrogen deprivation in Arabidopsis thaliana . Biosci. Biotechnol. Biochem. 63 , 762 –766.CrossrefGoogle Scholar

  • Yoo, B.C. and Harmon, A.C. (1997). Regulation of recombinant soybean serine acetyltransferase by CDPK. Plant Physiol. 114 , 1384 –1384.Google Scholar

  • Youssefian, S., Nakamura, M., and Sano, H. (1993). Tobacco plants transformed with the O -acetylserine(thiol)lyase gene of wheat are resistant to toxic levels of hydrogen sulphide gas. Plant J. 4 , 759 –769.CrossrefGoogle Scholar

  • Youssefian, S., Nakamura, M., Orudgev, E., and Kondo, N. (2001). Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O -acetylserine(thiol)lyase modifies plant responses to oxidative stress. Plant Physiol. 126 , 1001 –1011.CrossrefGoogle Scholar

  • Zeh, M., Casazza, A.P., Kreft, O., Roessner, U., Bieberich, K., Willmitzer, L., Hoefgen, R., and Hesse, H. (2001). Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol. 127 , 792 –802.CrossrefGoogle Scholar

  • Zhao, F.J., Hawkesford, M.J., and McGrath, S.P. (1999). Sulphur assimilation and effects on yield and quality of wheat. J. Cereal Sci. 30 , 1 –17.CrossrefGoogle Scholar

  • Zhu, X. and Galili, G. (2003). Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also trans regulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell 15 , 845 –853.CrossrefGoogle Scholar

  • Zhu, X. and Galili, G. (2004). Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues. Plant Physiol. 135 , 129 –136.CrossrefGoogle Scholar

  • Zhu, X., Tang, G., and Galili, G. (2001). A T-DNA insertion knockout of the bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine levels in Arabidopsis seeds. Plant Physiol. 126 , 1539 –1545.Google Scholar

About the article

Corresponding author


Published Online: 2005-09-09

Published in Print: 2005-09-01


Citation Information: Biological Chemistry, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2005.097.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Qingqing Yang, Hongyu Wu, Qianfeng Li, Ruxu Duan, Changquan Zhang, Samuel Saiming Sun, and Qiaoquan Liu
Journal of Agricultural and Food Chemistry, 2017, Volume 65, Number 21, Page 4296
[2]
Yael Hacham, Ifat Matityahu, and Rachel Amir
Physiologia Plantarum, 2017, Volume 160, Number 3, Page 242
[3]
Beata Smolinska, Agnieszka Szczodrowska, and Joanna Leszczynska
International Journal of Phytoremediation, 2017, Volume 19, Number 8, Page 765
[4]
Qing-Qing Yang, Xiao-Yun He, Hong-Yu Wu, Chang-Quan Zhang, Shi-Ying Zou, Tian-Qi Lang, Samuel Sai-Ming Sun, and Qiao-Quan Liu
Food and Chemical Toxicology, 2017, Volume 105, Page 214
[5]
Hagai Cohen, Asaf Salmon, Zipora Tietel, Yael Hacham, and Rachel Amir
Plant Cell Reports, 2017, Volume 36, Number 5, Page 731
[6]
Qing-qing Yang, Chang-quan Zhang, Man-ling Chan, Dong-sheng Zhao, Jin-zhu Chen, Qing Wang, Qian-feng Li, Heng-xiu Yu, Ming-hong Gu, Samuel Sai-ming Sun, and Qiao-quan Liu
Journal of Experimental Botany, 2016, Volume 67, Number 14, Page 4285
[7]
Gad Galili, Rachel Amir, and Alisdair R. Fernie
Annual Review of Plant Biology, 2016, Volume 67, Number 1, Page 153
[8]
Carl D. Christensen, Jan-Hendrik S. Hofmeyr, and Johann M. Rohwer
BMC Systems Biology, 2015, Volume 9, Number 1
[9]
Deep Shikha Birla, Kapil Malik, Manish Sainger, Darshna Chaudhary, Ranjana Jaiwal, and Pawan K. Jaiwal
Critical Reviews in Food Science and Nutrition, 2017, Volume 57, Number 11, Page 2455
[10]
A. Kumar, S. Dwivedi, R. P. Singh, D. Chakrabarty, S. Mallick, P. K. Trivedi, B. Adhikari, and R. D. Tripathi
Biologia Plantarum, 2014, Volume 58, Number 4, Page 733
[11]
Rüdiger Hell and Markus Wirtz
The Arabidopsis Book, 2011, Volume 9, Page e0154
[12]
Yves Ingenbleek and Hideo Kimura
Nutrition Reviews, 2013, Volume 71, Number 7, Page 413
[13]
Gad Galili and Rachel Amir
Plant Biotechnology Journal, 2013, Volume 11, Number 2, Page 211
[14]
Priyanka Verma, Ajay K. Mathur, and Karuna Shanker
Plant Cell, Tissue and Organ Culture (PCTOC), 2012, Volume 111, Number 2, Page 239
[15]
Rachel Amir, Tihanfu Han, and Fengming Ma
Molecular Breeding, 2012, Volume 29, Number 4, Page 915
[16]
Ehud Inbar, Gaspar E. Canepa, Carolina Carrillo, Fabian Glaser, Marianne Suter Grotemeyer, Doris Rentsch, Dan Zilberstein, and Claudio A. Pereira
Amino Acids, 2012, Volume 42, Number 1, Page 347
[17]
Moti Alberstein, Miriam Eisenstein, and Hagai Abeliovich
The Plant Journal, 2012, Volume 69, Number 1, Page 57
[18]
Jung‐Sup Kim and Soon‐Dong Lee
Integrative Biosciences, 2006, Volume 10, Number 4, Page 197
[19]
Martin Stupak, Hervé Vanderschuren, Wilhelm Gruissem, and Peng Zhang
Trends in Food Science & Technology, 2006, Volume 17, Number 12, Page 634
[20]
R. A. Azevedo and P. Arruda
Amino Acids, 2010, Volume 39, Number 4, Page 979
[22]
Yael Hacham, Luhua Song, Gadi Schuster, and Rachel Amir
The Plant Journal, 2007, Volume 51, Number 5, Page 850
[23]
Gilles Curien, Olivier Bastien, Mylène Robert-Genthon, Athel Cornish-Bowden, María Luz Cárdenas, and Renaud Dumas
Molecular Systems Biology, 2009, Volume 5
[24]
Jan B. van Beilen and Yves Poirier
The Plant Journal, 2008, Volume 54, Number 4, Page 684
[25]
Jan B. van Beilen
Biofuels, Bioproducts and Biorefining, 2008, Volume 2, Number 3, Page 215
[26]
Minsang Lee, Tengfang Huang, Tatiana Toro-Ramos, Michele Fraga, Robert L. Last, and Georg Jander
The Plant Journal, 2008, Volume 54, Number 2, Page 310
[29]
Atsushi Ishihara, Fumio Matsuda, Hisashi Miyagawa, and Kyo Wakasa
Metabolomics, 2007, Volume 3, Number 3, Page 319

Comments (0)

Please log in or register to comment.
Log in