Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Just Accepted


N-Ethylmaleimide-sensitive factor: a redox sensor in exocytosis

Charles J. Lowenstein
  • Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hiromasa Tsuda
  • Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-11-02 | DOI: https://doi.org/10.1515/BC.2006.173


Vascular injury triggers endothelial exocytosis of granules, releasing pro-inflammatory and pro-thrombotic mediators into the blood. Nitric oxide (NO) and reactive oxygen species (ROS) limit vascular inflammation and thrombosis by inhibiting endothelial exocytosis. NO decreases exocytosis by regulating the activity of the N-ethylmaleimide-sensitive factor (NSF), a central component of the exocytic machinery. NO nitrosylates specific cysteine residues of NSF, thereby inhibiting NSF disassembly of the soluble NSF attachment protein receptor (SNARE). NO also modulates exocytosis of other cells; for example, NO regulates platelet activation by inhibiting α-granule secretion from platelets. Other radicals besides NO can regulate exocytosis as well. For example, H2O2 inhibits exocytosis by oxidizing NSF. Using site-directed mutagenesis, we have defined the critical cysteine residues of NSF, and found that one particular cysteine residue, C264, renders NSF sensitive to oxidative stress. Since radicals such as NO and H2O2 inhibit NSF and decrease exocytosis, NSF may act as a redox sensor, modulating exocytosis in response to changes in oxidative stress.

Keywords: endothelial cell; hydrogen peroxide; nitric oxide; peroxynitrite; platelet; reactive oxygen species; superoxide; Weibel-Palade bodies

About the article

Corresponding author

Published Online: 2006-11-02

Published in Print: 2006-10-01

Citation Information: Biological Chemistry, Volume 387, Issue 10/11, Pages 1377–1383, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2006.173.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shuaizhi Li, Matthew P. Bronnimann, Spencer J. Williams, Samuel K. Campos, and Craig Meyers
PLOS ONE, 2019, Volume 14, Number 11, Page e0225496
Thomas W. Sedlak, Bindu D. Paul, Gregory M. Parker, Lynda D. Hester, Adele M. Snowman, Yu Taniguchi, Atsushi Kamiya, Solomon H. Snyder, and Akira Sawa
Proceedings of the National Academy of Sciences, 2019, Volume 116, Number 7, Page 2701
Julie L. Pongrac, Penelope J. Slack, and Sheila M. Innis
The Journal of Nutrition, 2007, Volume 137, Number 8, Page 1852
Yong Zhou, Shui-Xiang Yang, Yu-Nan Yue, Xiao-Fei Wei, and Yan Liu
Molecular Medicine Reports, 2016, Volume 14, Number 2, Page 1061
Brooke A. Miller, Jason B. Papke, Vytas P. Bindokas, and Amy B. Harkins
ACS Chemical Neuroscience, 2017
Juan I. Sbodio and Carolyn E. Machamer
Journal of Biological Chemistry, 2007, Volume 282, Number 41, Page 29874
Sandra Nell, Ramona Bahtz, Anja Boßecker, Anna Kipp, Nico Landes, Christiane Bumke-Vogt, Eugene Halligan, Joseph Lunec, and Regina Brigelius-Flohé
Free Radical Research, 2007, Volume 41, Number 8, Page 930
Lakshmi Santhanam, Dan E. Berkowitz, and Alexey M. Belkin
Communicative & Integrative Biology, 2011, Volume 4, Number 5, Page 584
Dan Secor, Scott Swarbreck, Christopher G. Ellis, Michael D. Sharpe, and Karel Tyml
Microcirculation, 2013, Volume 20, Number 6, Page 502
Niv Bachnoff, Moshe Cohen-Kutner, Michael Trus, and Daphne Atlas
Scientific Reports, 2013, Volume 3, Number 1
Antonio Romero-Ruiz, Rebeca Mejías, Juan Díaz-Martín, José López-Barneo, and Lin Gao
Journal of Proteomics, 2010, Volume 73, Number 9, Page 1747
Mirthala Flores-García, Juan M. Fernández-G, Mireille León-Martínez, Simón Hernández-Ortega, Oscar Pérez-Méndez, José Correa-Basurto, Elizabeth Carreón-Torres, Luis E. Tolentino-López, Guillermo Manuel Ceballos-Reyes, and Aurora de la Peña-Díaz
Steroids, 2012, Volume 77, Number 5, Page 512
Chandan K. Sen and Sashwati Roy
Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, Volume 1780, Number 11, Page 1348
Ekaterina N. Popova, Olga Y. Pletjushkina, Vera B. Dugina, Lidia V. Domnina, Olga Y. Ivanova, Denis S. Izyumov, Vladimir P. Skulachev, and Boris V. Chernyak
Antioxidants & Redox Signaling, 2010, Volume 13, Number 9, Page 1297
Munekazu Yamakuchi, Clare Bao, Marcella Ferlito, and Charles J. Lowenstein
Biological Chemistry, 2008, Volume 389, Number 7
Michael Fine, Marc C. Llaguno, Vincenzo Lariccia, Mei-Jung Lin, Alp Yaradanakul, and Donald W. Hilgemann
The Journal of General Physiology, 2011, Volume 137, Number 2, Page 137
Guang-fa Wang, Shao-yu Wu, Jin-jun Rao, Lin Lü, Wei Xu, Jian-xin Pang, Zhong-qiu Liu, Shu-guang Wu, and Jia-jie Zhang
Acta Pharmacologica Sinica, 2009, Volume 30, Number 5, Page 589

Comments (0)

Please log in or register to comment.
Log in