Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 17, 2006

Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8

  • Silvia Naus , Simone Reipschläger , Dirk Wildeboer , Stefan F. Lichtenthaler , Stefan Mitterreiter , Ziqiang Guan , Marcia L. Moss and Jörg W. Bartsch
From the journal Biological Chemistry

Abstract

ADAM proteases are type I transmembrane proteins with extracellular metalloprotease domains. As for most ADAM family members, ADAM8 (CD156a, MS2) is involved in ectodomain shedding of membrane proteins and is linked to inflammation and neurodegeneration. To identify potential substrates released under these pathologic conditions, we screened 10-mer peptides representing amino acid sequences from extracellular domains of various membrane proteins using the ProteaseSpot™ system. A soluble ADAM8 protease containing a pro- and metalloprotease domain was expressed in E. coli and purified as active protease owing to autocatalytic prodomain removal. From 34 peptides tested in the peptide cleavage assay, significant cleavage by soluble ADAM8 was observed for 14 peptides representing membrane proteins with functions in inflammation and neurodegeneration, among them the β-amyloid precursor protein (APP). The in vivo relevance of the ProteaseSpot™ method was confirmed by cleavage of full-length APP with ADAM8 in human embryonic kidney 293 cells expressing tagged APP. ADAM8 cleaved APP with similar efficiency as ADAM10, whereas the inactive ADAM8 mutant did not. Exchanging amino acids at defined positions in the cleavage sequence of myelin basic protein (MBP) revealed sequence criteria for ADAM8 cleavage. Taken together, the results allowed us to identify novel candidate substrates that could be cleaved by ADAM8 in vivo under pathologic conditions.

:

Corresponding author

References

Amour, A., Knight, C.G., Webster, A., Slocombe, P.M., Stephens, P.E., Knäuper, V., Docherty, A.J., and Murphy, G. (2000). The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett.473, 275–279.10.1016/S0014-5793(00)01528-3Search in Google Scholar

Amour, A., Knight, C.G., English, W.R., Webster, A., Slocombe, P.M., Knäuper, V., Docherty, A.J., Becherer, J.D., Blobel, C.P., and Murphy, G. (2002). The enzymatic activity of ADAM8 and ADAM9 is not regulated by TIMPs. FEBS Lett.524, 154–155.10.1016/S0014-5793(02)03047-8Search in Google Scholar

Arribas, J., Lopez-Casillas, F., and Massague, J. (1997). Role of the juxtamembrane domains of the transforming growth factor-α precursor and the β-amyloid precursor protein in regulated ectodomain shedding. J. Biol. Chem.272, 17160–17165.10.1074/jbc.272.27.17160Search in Google Scholar

Asai, M., Hattori, C., Szabo, B., Sasagawa, N., Maruyama, K., Tanuma, S., and Ishiura, S. (2003). Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase. Biochem. Biophys. Res. Commun.301, 231–235.10.1016/S0006-291X(02)02999-6Search in Google Scholar

Black, R.A., Rauch, C.T., Kozlosky, C.J., Peschon, J.J., Slack, J.L., Wolfson, M.F., Castner, B.J., Stocking, K.L., Reddy, P., Srinivasan, S., et al. (1997). A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature385, 729–733.10.1038/385729a0Search in Google Scholar

Blobel, C.P. (2005). ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol.6, 32–43.10.1038/nrm1548Search in Google Scholar

Buxbaum, J.D., Liu, K.N., Luo, Y., Slack, J.L., Stocking, K.L., Peschon, J.J., Johnson, R.S., Castner, B.J., Cerretti, D.P., and Black, R.A. (1998). Evidence that tumor necrosis factor-α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem.273, 27765–27767.10.1074/jbc.273.43.27765Search in Google Scholar

Chantry, A., Gregson, N.A., and Glynn, P. (1989). A novel metalloproteinase associated with brain myelin membranes. Isolation and characterization. J. Biol. Chem.264, 21603–21607.10.1016/S0021-9258(20)88226-XSearch in Google Scholar

Chesneau, V., Becherer, J.D., Zheng, Y., Erdjument-Bromage, H., Tempst, P., and Blobel, C.P. (2003). Catalytic properties of ADAM19. J. Biol. Chem.278, 22331–22340.10.1074/jbc.M302781200Search in Google Scholar PubMed

Davenpeck, K.L., Brummet, M.E., Hudson, S.A., Mayer, R.J., and Bochner, B.S. (2000). Activation of human leukocytes reduces surface P-selectin glycoprotein ligand-1 (PSGL-1, CD162) and adhesion to P-selectin in vitro. J. Immunol.165, 2764–2772.10.4049/jimmunol.165.5.2764Search in Google Scholar PubMed

Droste, A., Sorg, C., and Hogger, P. (1999). Shedding of CD163, a novel regulatory mechanism for a member of the scavenger receptor cysteine-rich family. Biochem. Biophys. Res. Commun.256, 110–113.10.1006/bbrc.1999.0294Search in Google Scholar

Fourie, A.M., Coles, F., Moreno, V., and Karlsson, L. (2003). Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J. Biol. Chem.278, 30469–30477.10.1074/jbc.M213157200Search in Google Scholar

Furukawa, K., Sopher, B.L., Rydel, R.E., Begley, J.G., Pham, D.G., Martin, G.M., Fox, M., and Mattson, M.P. (1996). Increased activity-regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem.67, 1882–1896.10.1046/j.1471-4159.1996.67051882.xSearch in Google Scholar

Garton, K.J., Gough, P.J., Blobel, C.P., Murphy, G., Greaves, D.R., Dempsey, P.J., and Raines, E.W. (2001). Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem.276, 37993–38001.10.1074/jbc.M106434200Search in Google Scholar

Haass, C. (2004). Take five – BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation. EMBO J.23, 483–488.10.1038/sj.emboj.7600061Search in Google Scholar

Harrison, D., Phillips, J.H., and Lanier, L.L. (1991). Involvement of a metalloprotease in spontaneous and phorbol esterinduced release of natural killer cell-associated Fc γ RIII (CD16-II). J. Immunol.147, 3459–3465.10.4049/jimmunol.147.10.3459Search in Google Scholar

Howard, L., Zheng, Y., Horrocks, M., Maciewicz, R.A., and Blobel, C. (2001). Catalytic activity of ADAM28. FEBS Lett.498, 82–86.10.1016/S0014-5793(01)02506-6Search in Google Scholar

Ida, N., Hartmann, T., Pantel, J., Schröder, J., Zerfass, R., Förstl, H., Sandbrink, R., Masters, C.L., and Beyreuther, K. (1996). Analysis of heterogeneous βA4 peptides in human cerebral spinal fluid and blood by a newly developed sensitive western blot assay. J. Biol. Chem.271, 22908–22914.10.1074/jbc.271.37.22908Search in Google Scholar PubMed

Ishikawa, N., Daigo, Y., Yasui, W., Inai, K., Nishimura, H., Tsuchiya, E., Kohno, N., and Nakamura, Y. (2004). ADAM8 as a novel serological and histochemical marker for lung cancer. Clin. Cancer Res.10, 8363–8370.10.1158/1078-0432.CCR-04-1436Search in Google Scholar PubMed

Kelly, K., Hutchinson, G., Nebenius-Oosthuizen, D., Smith, A.J., Bartsch, J.W., Horiuchi, K., Rittger, A., Manova, K., Docherty, A.J., and Blobel, C.P. (2005). Metalloprotease-disintegrin ADAM8: expression analysis and targeted deletion in mice. Dev. Dyn.232, 221–231.10.1002/dvdy.20221Search in Google Scholar PubMed

King, N.E., Zimmermann, N., Pope, S.M., Fulkerson, P.C., Nikolaidis, N.M., Mishra, A., Witte, D.P., and Rothenberg, M.E. (2004). Expression and regulation of a disintegrin and metalloproteinase (ADAM) 8 in experimental asthma. Am. J. Respir. Cell Mol. Biol.31, 257–265.10.1165/rcmb.2004-0026OCSearch in Google Scholar PubMed

Koike, H., Tomioka, S., Sorimachi, H., Saido, T.C., Maruyama, K., Okuyama, A., Fujisawa-Sehara, A., Ohno, S., Suzuki, K., and Ishiura, S. (1999). Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochem. J.343, 371–375.10.1042/bj3430371Search in Google Scholar

Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C., and Fahrenholz, F. (1999). Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA96, 3922–3927.10.1073/pnas.96.7.3922Search in Google Scholar PubMed PubMed Central

Lichtenthaler, S.F., Dominguez, D.I., Westmeyer, G.G., Reiss, K., Haass, C., Saftig, P., De Strooper, B., and Seed, B. (2003). The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1. J. Biol. Chem.278, 48713–48719.10.1074/jbc.M303861200Search in Google Scholar PubMed

Lum, L., Wong, B.R., Josien, R., Becherer, J.D., Erdjument-Bromage, H., Schlondorff, J., Tempst, P., Choi, Y., and Blobel, C.P. (1999). Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclasto-genesis and dendritic cell survival. J. Biol. Chem.274, 13613–13618.10.1074/jbc.274.19.13613Search in Google Scholar PubMed

Marolewski, A.E., Buckle, D.R., Christie, G., Earnshaw, D.L., Flamberg, P.L., Marshall, L.A., Smith, D.G., and Mayer, R.J. (1998). CD23 (FcɛRII) release from cell membranes is mediated by a membrane-bound metalloprotease. Biochem. J.333, 573–579.10.1042/bj3330573Search in Google Scholar PubMed PubMed Central

Mattson, M.P., Pedersen, W.A., Duan, W., Culmsee, C., and Camandola, S. (1999). Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseases. Ann. N.Y. Acad. Sci.893, 154–175.10.1111/j.1749-6632.1999.tb07824.xSearch in Google Scholar PubMed

Mayer, R.J., Flamberg, P.L., Katchur, S.R., Bolognese, B.J., Smith, D.G., Marolewski, A.E., Marshall, L.A., and Faller, A. (2002). CD23 shedding: requirements for substrate recognition and inhibition by dipeptide hydroxamic acids. Inflamm. Res.51, 85–90.10.1007/BF02684008Search in Google Scholar PubMed

Meziane, H., Dodart, J.C., Mathis, C., Little, S., Clemens, J., Paul, S.M., and Ungerer, A. (1998). Memory-enhancing effects of secreted forms of the β-amyloid precursor protein in normal and amnestic mice. Proc. Natl. Acad. Sci. USA95, 12683–12688.10.1073/pnas.95.21.12683Search in Google Scholar PubMed PubMed Central

Mohan, M.J., Seaton, T., Mitchell, J., Howe, A., Blackburn, K., Burkhart, W., Moyer, M., Patel, I., Waitt, G.M., Becherer, J.D., Moss, M.L., and Milla, M.E. (2002). The tumor necrosis factor-α converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity. Biochemistry41, 9462–9469.10.1021/bi0260132Search in Google Scholar PubMed

Moss, M.L. and Bartsch, J.W. (2004). Therapeutic benefits from targeting of ADAM family members. Biochemistry43, 7227–7235.10.1021/bi049677fSearch in Google Scholar PubMed

Moss, M.L., Jin, S.L., Milla, M.E., Bickett, D.M., Burkhart, W., Carter, H.L., Chen, W.J., Clay, W.C., Didsbury, J.R., Hassler, D., et al. (1997). Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature385, 733–736.10.1038/385733a0Search in Google Scholar PubMed

Naus, S., Richter, M., Wildeboer, D., Moss, M., Schachner, M., and Bartsch, J.W. (2004). Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. J. Biol. Chem.279, 16083–16090.10.1074/jbc.M400560200Search in Google Scholar PubMed

Peschon, J.J., Slack, J.L., Reddy, P., Stocking, K.L., Sunnarborg, S.W., Lee, D.C., Russell, W.E., Castner, B.J., Johnson, R.S., Fitzner, J.N., et al. (1998). An essential role for ectodomain shedding in mammalian development. Science282, 1281–1284.10.1126/science.282.5392.1281Search in Google Scholar PubMed

Pinckard, J.K., Sheehan, K.C., Arthur, C.D., and Schreiber, R.D. (1997). Constitutive shedding of both p55 and p75 murine TNF receptors in vivo. J. Immunol.158, 3869–3873.10.4049/jimmunol.158.8.3869Search in Google Scholar

Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., Prinzen, C., Endres, K., Hiemke, C., Blessing, M., et al. (2004). A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J. Clin. Invest.113, 1456–1464.10.1172/JCI20864Search in Google Scholar PubMed PubMed Central

Reddy, P., Slack, J.L., Davis, R., Cerretti, D.P., Kozlosky, C.J., Blanton, R.A., Shows, D., Peschon, J.J., and Black, R.A. (2000). Functional analysis of the domain structure of tumor necrosis factor-α converting enzyme. J. Biol. Chem.275, 14608–14614.10.1074/jbc.275.19.14608Search in Google Scholar PubMed

Roemer, A., Schwettmann, L., Jung, M., Roigas, J., Kristiansen, G., Schnorr, D., Loening, S.A., Jung, K., and Lichtinghagen, R. (2004). Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol. Rep.11, 529–536.10.3892/or.11.2.529Search in Google Scholar

Roghani, M., Becherer, J.D., Moss, M.L., Atherton, R.E., Erdjument-Bromage, H., Arribas, J., Blackburn, R.K., Weskamp, G., Tempst, P., and Blobel, C.P. (1999). Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem.274, 3531–3540.10.1074/jbc.274.6.3531Search in Google Scholar PubMed

Schlomann, U., Rathke-Hartlieb, S., Yamamoto, S., Jockusch, H., and Bartsch, J.W. (2000). Tumor necrosis factor-α induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J. Neurosci.20, 7964–7971.10.1523/JNEUROSCI.20-21-07964.2000Search in Google Scholar

Schlomann, U., Wildeboer, D., Webster, A., Antropova, O., Zeuschner, D., Knight, C.G., Docherty, A.J., Lambert, M., Skelton, L., Jockusch, H., and Bartsch, J.W. (2002). The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J. Biol. Chem.277, 48210–48219.10.1074/jbc.M203355200Search in Google Scholar PubMed

Schöbel, S., Neumann, S., Seed, B., and Lichtenthaler, S.F. (2006). Expression cloning screen for modifiers of amyloid precursor protein shedding. Int. J. Dev. Neurosci., in press.10.1016/j.ijdevneu.2005.11.003Search in Google Scholar PubMed

Seals, D.F. and Courtneidge, S.A. (2003). The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev.17, 7–30.10.1101/gad.1039703Search in Google Scholar PubMed

Steiner, H., Kostka, M., Romig, H., Basset, G., Pesold, B., Hardy, J., Capell, A., Meyn, L., Grim, M.L., Baumeister, R., et al. (2000). Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nat. Cell Biol.2, 848–851.10.1038/35041097Search in Google Scholar PubMed

Weskamp, G., Cai, H., Brodie, T.A., Higashiyama, S., Manova, K., Ludwig, T., and Blobel, C.P. (2002). Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol. Cell. Biol.22, 1537–1544.10.1128/MCB.22.5.1537-1544.2002Search in Google Scholar PubMed PubMed Central

Yoshida, S., Setoguchi, M., Higuchi, Y., Akizuki, S., and Yamamoto, S. (1990). Molecular cloning of cDNA encoding MS2 antigen, a novel cell surface antigen strongly expressed in murine monocytic lineage. Int. Immunol.2, 585–591.10.1093/intimm/2.6.585Search in Google Scholar PubMed

Zou, J., Zhu, F., Liu, J., Wang, W., Zhang, R., Garlisi, C.G., Liu, Y.H., Wang, S., Shah, H., Wan, Y., and Umland, S.P. (2004). Catalytic activity of human ADAM33. J. Biol. Chem.279, 9818–9830.10.1074/jbc.M309696200Search in Google Scholar PubMed

Published Online: 2006-03-17
Published in Print: 2006-03-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.045/html
Scroll to top button