Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 11, 2006

Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis

  • Shosuke Kawanishi , Yusuke Hiraku , Somchai Pinlaor and Ning Ma
From the journal Biological Chemistry

Abstract

Infection and chronic inflammation are proposed to contribute to carcinogenesis through inflammation-related mechanisms. Infection with hepatitis C virus, Helicobacter pylori and the liver fluke, Opisthorchis viverrini (OV), are important risk factors for hepatocellular carcinoma (HCC), gastric cancer and cholangiocarcinoma, respectively. Inflammatory bowel diseases (IBDs) and oral diseases, such as oral lichen planus (OLP) and leukoplakia, are associated with colon carcinogenesis and oral squamous cell carcinoma (OSCC), respectively. We performed a double immunofluorescence labeling study and found that nitrative and oxidative DNA lesion products, 8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), were formed and inducible nitric oxide synthase (iNOS) was expressed in epithelial cells and inflammatory cells at the site of carcinogenesis in humans and animal models. Antibacterial, antiviral and antiparasitic drugs dramatically diminished the formation of these DNA lesion markers and iNOS expression. These results suggest that oxidative and nitrative DNA damage occurs at the sites of carcinogenesis, regardless of etiology. Therefore, it is considered that excessive amounts of reactive nitrogen species produced via iNOS during chronic inflammation may play a key role in carcinogenesis by causing DNA damage. On the basis of our results, we propose that 8-nitroguanine is a promising biomarker to evaluate the potential risk of inflammation-mediated carcinogenesis.

:

Corresponding author

References

Akaike, T., Okamoto, S., Sawa, T., Yoshitake, J., Tamura, F., Ichimori, K., Miyazaki, K., Sasamoto, K., and Maeda, H. (2003). 8-Nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc. Natl. Acad. Sci. USA100, 685–690.10.1073/pnas.0235623100Search in Google Scholar

Balkwill, F. and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet357, 539–545.10.1016/S0140-6736(00)04046-0Search in Google Scholar

Bos, J.L. (1988). The ras gene family and human carcinogenesis. Mutat. Res.195, 255–271.10.1016/0165-1110(88)90004-8Search in Google Scholar

Bouma, G. and Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol.3, 521–533.10.1038/nri1132Search in Google Scholar PubMed

Bressac, B., Kew, M., Wands, J., and Ozturk, M. (1991). Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature350, 429–431.10.1038/350429a0Search in Google Scholar PubMed

Bruner, S.D., Norman, D.P., and Verdine, G.L. (2000). Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature403, 859–866.10.1038/35002510Search in Google Scholar PubMed

Burrows, C.J. and Muller, J.G. (1998). Oxidative nucleobase modifications leading to strand scission. Chem. Rev.98, 1109–1151.10.1021/cr960421sSearch in Google Scholar PubMed

Caselmann, W.H. and Alt, M. (1996). Hepatitis C virus infection as a major risk factor for hepatocellular carcinoma. J. Hepatol.24, 61–66.Search in Google Scholar

Chaiyarit, P., Ma, N., Hiraku, Y., Pinlaor, S., Yongvanit, P., Jintakanon, D., Murata, M., Oikawa, S., and Kawanishi, S. (2005). Nitrative and oxidative DNA damage in oral lichen planus in relation to human oral carcinogenesis. Cancer Sci.96, 553–559.10.1111/j.1349-7006.2005.00096.xSearch in Google Scholar PubMed

Coussens, L.M. and Werb, Z. (2002). Inflammation and cancer. Nature420, 860–867.10.1038/nature01322Search in Google Scholar PubMed PubMed Central

Dekker, N.P., Lozada-Nur, F., Lagenaur, L.A., MacPhail, L.A., Bloom, C.Y., and Regezi, J.A. (1997). Apoptosis-associated markers in oral lichen planus. J. Oral Pathol. Med.26, 170–175.10.1111/j.1600-0714.1997.tb00453.xSearch in Google Scholar PubMed

Ding, X., Hiraku, Y., Ma, N., Kato, T., Saito, K., Nagahama, M., Semba, R., Kuribayashi, K., and Kawanishi, S. (2005). Inducible nitric oxide synthase-dependent DNA damage in mouse model of inflammatory bowel disease. Cancer Sci.96, 157–163.10.1111/j.1349-7006.2005.00024.xSearch in Google Scholar

Ekbom, A., Helmick, C., Zack, M., and Adami, H.O. (1990). Increased risk of large-bowel cancer in Crohn's disease with colonic involvement. Lancet336, 357–359.10.1016/0140-6736(90)91889-ISearch in Google Scholar

Evans, M.D., Dizdaroglu, M., and Cooke, M.S. (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res.567, 1–61.10.1016/j.mrrev.2003.11.001Search in Google Scholar PubMed

Haracska, L., Unk, I., Johnson, R.E., Johansson, E., Burgers, P.M., Prakash, S., and Prakash, L. (2001). Roles of yeast DNA polymerases δ and ζ and of Rev1 in the bypass of abasic sites. Genes Dev.15, 945–954.10.1101/gad.882301Search in Google Scholar PubMed PubMed Central

Haswell-Elkins, M.R., Mairiang, E., Mairiang, P., Chaiyakum, J., Chamadol, N., Loapaiboon, V., Sithithaworn, P., and Elkins, D.B. (1994). Cross-sectional study of Opisthorchis viverrini infection and cholangiocarcinoma in communities within a high-risk area in northeast Thailand. Int. J. Cancer59, 505–509.10.1002/ijc.2910590412Search in Google Scholar PubMed

Hofseth, L.J., Khan, M.A., Ambrose, M., Nikolayeva, O., Xu-Welliver, M., Kartalou, M., Hussain, S.P., Roth, R.B., Zhou, X., Mechanic, L.E., et al. (2003a). The adaptive imbalance in base excision-repair enzymes generates microsatellite instability in chronic inflammation. J. Clin. Invest.112, 1887–1894.10.1172/JCI19757Search in Google Scholar PubMed PubMed Central

Hofseth, L.J., Saito, S., Hussain, S.P., Espey, M.G., Miranda, K.M., Araki, Y., Jhappan, C., Higashimoto, Y., He, P., Linke, S.P., et al. (2003b). Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc. Natl. Acad. Sci. USA100, 143–148.10.1073/pnas.0237083100Search in Google Scholar PubMed PubMed Central

Horiike, S., Kawanishi, S., Kaito, M., Ma, N., Tanaka, H., Fujita, N., Iwasa, M., Kobayashi, Y., Hiraku, Y., Oikawa, S., et al. (2005). Accumulation of 8-nitroguanine in the liver of patients with chronic hepatitis C. J. Hepatol.43, 403–410.10.1016/j.jhep.2005.03.026Search in Google Scholar PubMed

Hsu, I.C., Metcalf, R.A., Sun, T., Welsh, J.A., Wang, N.J., and Harris, C.C. (1991). Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature350, 427–428.10.1038/350427a0Search in Google Scholar PubMed

Hussain, S.P., Hofseth, L.J., and Harris, C.C. (2003). Radical causes of cancer. Nat. Rev. Cancer3, 276–285.10.1038/nrc1046Search in Google Scholar PubMed

IARC (2003). Chronic infections. In: World Cancer Report, B.W. Stewart and P. Kleihues, eds. (Lyon, France: IARC Press), pp. 56–61.Search in Google Scholar

IARC Working Group (1994a). Hepatitis C virus. IARC Monogr. Eval. Carcinog. Risks Hum. 59, 165–221.Search in Google Scholar

IARC Working Group (1994b). Infection with liver flukes (Opisthorchis viverrini, Opisthorchis felineus and Clonorchissinensis). IARC Monogr. Eval. Carcinog. Risks Hum. 61, 121–175.Search in Google Scholar

Inoue, S. and Kawanishi, S. (1995). Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett.371, 86–88.10.1016/0014-5793(95)00873-8Search in Google Scholar

Juedes, M.J. and Wogan, G.N. (1996). Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat. Res.349, 51–61.10.1016/0027-5107(95)00152-2Search in Google Scholar

Kawanishi, S., Hiraku, Y., and Oikawa, S. (2001). Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat. Res.488, 65–76.10.1016/S1383-5742(00)00059-4Search in Google Scholar

Kim, M.Y., Dong, M., Dedon, P.C., and Wogan, G.N. (2005). Effects of peroxynitrite dose and dose rate on DNA damage and mutation in the supF shuttle vector. Chem. Res. Toxicol.18, 76–86.10.1021/tx049777mSearch in Google Scholar

Loeb, L.A. and Preston, B.D. (1986). Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet.20, 201–230.10.1146/annurev.ge.20.120186.001221Search in Google Scholar

Lumerman, H., Freedman, P., and Kerpel, S. (1995). Oral epithelial dysplasia and the development of invasive squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.79, 321–329.10.1016/S1079-2104(05)80226-4Search in Google Scholar

Ma, N., Adachi, Y., Hiraku, Y., Horiki, N., Horiike, S., Imoto, I., Pinlaor, S., Murata, M., Semba, R., and Kawanishi, S. (2004). Accumulation of 8-nitroguanine in human gastric epithelium induced by Helicobacter pylori infection. Biochem. Biophys. Res. Commun.319, 506–510.10.1016/j.bbrc.2004.04.193Search in Google Scholar PubMed

Ma, N., Tagawa, T., Hiraku, Y., Murata, M., Ding, X., and Kawanishi, S. (2006). 8-Nitroguanine formation in oral leukoplakia, a premalignant lesion. Nitric Oxide14, 137–143.10.1016/j.niox.2005.09.012Search in Google Scholar PubMed

Maeda, S., Akanuma, M., Mitsuno, Y., Hirata, Y., Ogura, K., Yoshida, H., Shiratori, Y., and Omata, M. (2001). Distinct mechanism of Helicobacter pylori-mediated NF-κB activation between gastric cancer cells and monocytic cells. J. Biol. Chem.276, 44856–44864.10.1074/jbc.M105381200Search in Google Scholar PubMed

McNaughton, L., Puttagunta, L., Martinez-Cuesta, M.A., Kneteman, N., Mayers, I., Moqbel, R., Hamid, Q., and Radomski, M.W. (2002). Distribution of nitric oxide synthase in normal and cirrhotic human liver. Proc. Natl. Acad. Sci. USA99, 17161–17166.10.1073/pnas.0134112100Search in Google Scholar PubMed PubMed Central

Mignogna, M.D., Fedele, S., Lo Russo, L., Lo Muzio, L., and Bucci, E. (2004). Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus: is there any evidence? Oral Oncol.40, 120–130.10.1016/j.oraloncology.2003.08.001Search in Google Scholar

Neville, B.W., and Day, T.A. (2002). Oral cancer and precancerous lesions. CA Cancer J. Clin.52, 195–215.10.3322/canjclin.52.4.195Search in Google Scholar

Oda, T., Tsuda, H., Scarpa, A., Sakamoto, M., and Hirohashi, S. (1992). p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res.52, 6358–6364.Search in Google Scholar

Ohshima, H., Tatemichi, M., and Sawa, T. (2003). Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys.417, 3–11.10.1016/S0003-9861(03)00283-2Search in Google Scholar

O'Neill, L.A., and Greene, C. (1998). Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J. Leukoc. Biol.63, 650–657.10.1002/jlb.63.6.650Search in Google Scholar

Peek Jr., R.M., and Blaser, M.J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer2, 28–37.Search in Google Scholar

Pikarsky, E., Porat, R.M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E., and Ben-Neriah, Y. (2004). NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature431, 461–466.10.1038/nature02924Search in Google Scholar PubMed

Pinlaor, S., Yongvanit, P., Hiraku, Y., Ma, N., Semba, R., Oikawa, S., Murata, M., Sripa, B., Sithithaworn, P., and Kawanishi, S. (2003). 8-Nitroguanine formation in the liver of hamsters infected with Opisthorchis viverrini. Biochem. Biophys. Res. Commun.309, 567–571.10.1016/j.bbrc.2003.08.039Search in Google Scholar PubMed

Pinlaor, S., Hiraku, Y., Ma, N., Yongvanit, P., Semba, R., Oikawa, S., Murata, M., Sripa, B., Sithithaworn, P., and Kawanishi, S. (2004a). Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini: a model of inflammation-mediated carcinogenesis. Nitric Oxide11, 175–183.10.1016/j.niox.2004.08.004Search in Google Scholar PubMed

Pinlaor, S., Ma, N., Hiraku, Y., Yongvanit, P., Semba, R., Oikawa, S., Murata, M., Sripa, B., Sithithaworn, P., and Kawanishi, S. (2004b). Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase. Carcinogenesis25, 1535–1542.10.1093/carcin/bgh157Search in Google Scholar PubMed

Pinlaor, S., Sripa, B., Ma, N., Hiraku, Y., Yongvanit, P., Wongkham, S., Pairojkul, C., Bhudhisawasdi, V., Oikawa, S., Murata, M., et al. (2005a). Nitrative and oxidative DNA damage in intrahepatic cholangiocarcinoma patients in relation to tumor invasion. World J. Gastroenterol.11, 4644–4649.10.3748/wjg.v11.i30.4644Search in Google Scholar PubMed PubMed Central

Pinlaor, S., Tada-Oikawa, S., Hiraku, Y., Pinlaor, P., Ma, N., Sithithaworn, P., and Kawanishi, S. (2005b). Opisthorchis viverrini antigen induces the expression of Toll-like receptor 2 in macrophage RAW cell line. Int. J. Parasitol.35, 591–596.10.1016/j.ijpara.2005.02.003Search in Google Scholar PubMed

Pinlaor, S., Hiraku, Y., Yongvanit, P., Tada-Oikawa, S., Ma, N., Pinlaor, P., Sithithaworn, P., Sripa, B., Marata, M., Oikawa, S., and Kawanishi, S. (2006). iNOS-dependent DNA damage via NF-κB expression in hamsters infected with Opisthorchis viverrini and its suppression by the antihelminthic drug praziquantel. Int. J. Cancer, in press.Search in Google Scholar

Podolsky, D.K. (2002). Inflammatory bowel disease. N. Engl. J. Med.347, 417–429.10.1056/NEJMra020831Search in Google Scholar

Powrie, F., Leach, M.W., Mauze, S., Caddle, L.B., and Coffman, R.L. (1993). Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C.B-17 scid mice. Int. Immunol.5, 1461–1471.Search in Google Scholar

Poynard, T., Yuen, M.F., Ratziu, V., and Lai, C.L. (2003). Viral hepatitis C. Lancet362, 2095–2100.10.1016/S0140-6736(03)15109-4Search in Google Scholar

Rahman, M.A., Dhar, D.K., Yamaguchi, E., Maruyama, S., Sato, T., Hayashi, H., Ono, T., Yamanoi, A., Kohno, H., and Nagasue, N. (2001). Coexpression of inducible nitric oxide synthase and COX-2 in hepatocellular carcinoma and surrounding liver: possible involvement of COX-2 in the angiogenesis of hepatitis C virus-positive cases. Clin. Cancer Res.7, 1325–1332.Search in Google Scholar

Rajentheran, R., McLean, N.R., Kelly, C.G., Reed, M.F., and Nolan, A. (1999). Malignant transformation of oral lichen planus. Eur. J. Surg. Oncol.25, 520–523.10.1053/ejso.1999.0689Search in Google Scholar

Reibel, J. (2003). Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics. Crit. Rev. Oral Biol. Med.14, 47–62.10.1177/154411130301400105Search in Google Scholar

Sawa, T., Akaike, T., Ichimori, K., Akuta, T., Kaneko, K., Nakayama, H., Stuehr, D.J., and Maeda, H. (2003). Superoxide generation mediated by 8-nitroguanosine, a highly redox-active nucleic acid derivative. Biochem. Biophys. Res. Commun.311, 300–306.10.1016/j.bbrc.2003.10.003Search in Google Scholar

Schipper, D.L., Wagenmans, M.J., Peters, W.H., and Wagener, D.J. (1998). Significance of cell proliferation measurement in gastric cancer. Eur. J. Cancer34, 781–790.10.1016/S0959-8049(97)10073-9Search in Google Scholar

Scully, C., Beyli, M., Ferreiro, M.C., Ficarra, G., Gill, Y., Griffiths, M., Holmstrup, P., Mutlu, S., Porter, S., and Wray, D. (1998). Update on oral lichen planus: etiopathogenesis and management. Crit. Rev. Oral Biol. Med.9, 86–122.10.1177/10454411980090010501Search in Google Scholar

Shibutani, S., Takeshita, M., and Grollman, A.P. (1991). Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature349, 431–434.10.1038/349431a0Search in Google Scholar

Singer, I.I., Kawka, D.W., Scott, S., Weidner, J.R., Mumford, R.A., Riehl, T.E., and Stenson, W.F. (1996). Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology111, 871–885.10.1016/S0016-5085(96)70055-0Search in Google Scholar

Suarez, P., Batsakis, J.G., and el-Naggar, A.K. (1998). Leukoplakia: still a gallimaufry or is progress being made?– A review. Adv. Anat. Pathol.5, 137–155.10.1097/00125480-199805000-00001Search in Google Scholar

Sudbo, J. and Reith, A. (2005). The evolution of predictive oncology and molecular-based therapy for oral cancer prevention. Int. J. Cancer115, 339–345.10.1002/ijc.20896Search in Google Scholar

Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., and Lee, S.S. (2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res.480/481, 243–268.10.1016/S0027-5107(01)00183-XSearch in Google Scholar

Suzuki, N., Yasui, M., Geacintov, N.E., Shafirovich, V., and Shibutani, S. (2005). Miscoding events during DNA synthesis past the nitration-damaged base 8-nitroguanine. Biochemistry44, 9238–9245.10.1021/bi050276pSearch in Google Scholar PubMed

Takahashi, T., Nau, M.M., Chiba, I., Birrer, M.J., Rosenberg, R.K., Vinocour, M., Levitt, M., Pass, H., Gazdar, A.F., and Minna, J.D. (1989). p53: a frequent target for genetic abnormalities in lung cancer. Science246, 491–494.10.1126/science.2554494Search in Google Scholar PubMed

Tyldesley, W.R., and Appleton, J. (1973). Observations on the ultrastructure of the epithelium in oral lichen planus. J. Oral. Pathol.2, 46–57.10.1111/j.1600-0714.1973.tb01673.xSearch in Google Scholar PubMed

Uttararvichen, T., Buddhiswasdi, V., and Pairojkul, C. (1996). Bile duct cancer and the liver fluke: pathology, presentation and surgical management. Asian J. Surg.19, 267–270.Search in Google Scholar

Wiseman, H., and Halliwell, B. (1996). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J.313, 17–29.10.1042/bj3130017Search in Google Scholar PubMed PubMed Central

Wu, X., Takenaka, K., Sonoda, E., Hochegger, H., Kawanishi, S., Kawamoto, T., Takeda, S., and Yamazoe, M. (2006). Critical roles for polymerase ζ in cellular tolerance to nitric oxide-induced DNA damage. Cancer Res.66, 748–754.10.1158/0008-5472.CAN-05-2884Search in Google Scholar PubMed

Yermilov, V., Rubio, J., Becchi, M., Friesen, M.D., Pignatelli, B., and Ohshima, H. (1995). Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis16, 2045–2050.10.1093/carcin/16.9.2045Search in Google Scholar PubMed

Zaki, M.H., Akuta, T., and Akaike, T. (2005). Nitric oxide-induced nitrative stress involved in microbial pathogenesis. J. Pharmacol. Sci.98, 117–129.10.1254/jphs.CRJ05004XSearch in Google Scholar PubMed

Published Online: 2006-04-11
Published in Print: 2006-04-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.049/html
Scroll to top button