Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 388, Issue 1

Issues

The insect metalloproteinase inhibitor gene of the lepidopteran Galleria mellonella encodes two distinct inhibitors

Marianne Wedde
  • Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Weise
  • Institute of Chemistry and Biochemistry, Free University of Berlin, Thielallee 63, D-14195 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rolf Nuck
  • Charité– Campus Benjamin Franklin, Institute of Molecular Biology and Biochemistry, Arnimallee 22, D-14195 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Boran Altincicek
  • Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Vilcinskas
  • Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-01-10 | DOI: https://doi.org/10.1515/BC.2007.013

Abstract

The insect metalloproteinase inhibitor (IMPI) from the greater wax moth, Galleria mellonella, represents the first and to date only specific inhibitor of microbial metalloproteinases reported from animals. Here, we report on the characterization including carbohydrate analysis of two recombinant constructs encoded by impi cDNA either upstream or downstream of the furin cleavage site identified. rIMPI-1, corresponding to native IMPI purified from hemolymph, is encoded by the N-terminal part of the impi sequence, whereas rIMPI-2 is encoded by its C-terminal part. rIMPI-1 is glycosylated at N48 with GlcNAc2Man3, showing fucosylation to different extents. Similarly, rIMPI-2 is glycosylated at N149 with GlcNAc2Man3, but is fully fucosylated. rIMPI-1 represents a promising template for the design of second-generation antibiotics owing to its specific activity against thermolysin-like metalloproteinases produced by human pathogenic bacteria such as Vibrio vulnificus. In contrast, rIMPI-2 does not inhibit bacterial metalloproteinases, but is moderately active against recombinant human matrix metalloproteinases (MMPs). Both microbial metalloproteinases and MMPs induce expression of the impi gene when injected into G. mellonella larvae. These findings provide evidence that the impi gene encodes two distinct inhibitors, one inhibiting microbial metalloproteinases and contributing to innate immunity, the other putatively mediating regulation of endogenous MMPs during metamorphosis.

Keywords: Galleria mellonella; innate immunity; insects; matrix metalloproteinases; microbial metalloproteinases; protein glycosylation

About the article

Corresponding author


Received: June 2, 2006

Accepted: August 30, 2006

Published Online: 2007-01-10

Published in Print: 2007-01-01


Citation Information: Biological Chemistry, Volume 388, Issue 1, Pages 119–127, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2007.013.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michaela Eisenhardt, Peggy Schlupp, Frank Höfer, Thomas Schmidts, Daniel Hoffmann, Peter Czermak, Anne-Kathrin Pöppel, Andreas Vilcinskas, and Frank Runkel
Journal of Pharmacy and Pharmacology, 2018
[4]
Iwona Wojda
Insect Science, 2017, Volume 24, Number 3, Page 342
[5]
Eileen Knorr, Henrike Schmidtberg, Andreas Vilcinskas, Boran Altincicek, and Eleftherios Mylonakis
PLoS ONE, 2009, Volume 4, Number 3, Page e4751
[6]
Qinggang Xue, Jean-Phillipe Beguel, Julie Gauthier, and Jerome La Peyre
Fish & Shellfish Immunology, 2017, Volume 62, Page 332
[7]
Arton Berisha, Krishnendu Mukherjee, Andreas Vilcinskas, Bernhard Spengler, Andreas Römpp, and Joy Sturtevant
PLoS ONE, 2013, Volume 8, Number 11, Page e80406
[8]
L. Bingsohn, E. Knorr, A. Billion, K. E. Narva, and A. Vilcinskas
Insect Molecular Biology, 2017, Volume 26, Number 1, Page 92
[9]
Torsten Will, Henrike Schmidtberg, Marisa Skaljac, and Andreas Vilcinskas
Development Genes and Evolution, 2017, Volume 227, Number 1, Page 1
[10]
Gerrit Joop and Andreas Vilcinskas
Zoology, 2016, Volume 119, Number 4, Page 350
[11]
Eleftherios Mylonakis, Lars Podsiadlowski, Maged Muhammed, and Andreas Vilcinskas
Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, Volume 371, Number 1695, Page 20150290
[12]
Michaela Eisenhardt, Dorota Dobler, Peggy Schlupp, Thomas Schmidts, Mark Salzig, Andreas Vilcinskas, Denise Salzig, Peter Czermak, Michael Keusgen, and Frank Runkel
Journal of Pharmacy and Pharmacology, 2015, Volume 67, Number 11, Page 1481
[13]
Torsten Will and Andreas Vilcinskas
Insect Biochemistry and Molecular Biology, 2015, Volume 57, Page 34
[14]
Mariola Andrejko, Agnieszka Zdybicka-Barabas, and Małgorzata Cytryńska
Journal of Invertebrate Pathology, 2014, Volume 115, Page 14
[15]
Mariola Andrejko, Agnieszka Zdybicka-Barabas, Maria Wawrzoszek, and Małgorzata Cytryńska
Zoological Science, 2013, Volume 30, Number 5, Page 345
[16]
Andreas Vilcinskas
Journal of Insect Physiology, 2013, Volume 59, Number 2, Page 123
[17]
Sobhan Roy, Venugopal Rao Ravipati, Suvankar Ghorai, Mrinmay Chakrabarti, Amit Kumar Das, and Ananta Kumar Ghosh
Applied Biochemistry and Biotechnology, 2012, Volume 168, Number 5, Page 1076
[18]
Juliana De Marco Salvadori, Marina Schumacher Defferrari, Rodrigo Ligabue-Braun, Elene Yamazaki Lau, José Roberto Salvadori, and Celia Regina Carlini
Biological Control, 2012, Volume 63, Number 3, Page 253
[20]
Mariola Andrejko, Magdalena Mizerska-Dudka, and Teresa Jakubowicz
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2009, Volume 152, Number 2, Page 118
[21]
Iwona Wojda, Patryk Kowalski, and Teresa Jakubowicz
Journal of Insect Physiology, 2009, Volume 55, Number 6, Page 525
[22]
Joan L. Arolas, Tiago O. Botelho, Andreas Vilcinskas, and F. Xavier Gomis-Rüth
Angewandte Chemie, 2011, Volume 123, Number 44, Page 10541
[23]
Joan L. Arolas, Tiago O. Botelho, Andreas Vilcinskas, and F. Xavier Gomis-Rüth
Angewandte Chemie International Edition, 2011, Volume 50, Number 44, Page 10357
[24]
Mariola Andrejko and Magdalena Mizerska-Dudka
Journal of Invertebrate Pathology, 2011, Volume 107, Number 1, Page 16
[25]
Boran Altincicek and Andreas Vilcinskas
Developmental & Comparative Immunology, 2008, Volume 32, Number 4, Page 400
[26]
Susan E. Brown, Antoinette Howard, Annette B. Kasprzak, Karl H. Gordon, and Peter D. East
Insect Biochemistry and Molecular Biology, 2009, Volume 39, Number 11, Page 792
[27]
Heiko Vogel, Boran Altincicek, Gernot Glöckner, and Andreas Vilcinskas
BMC Genomics, 2011, Volume 12, Number 1
[28]
Boran Altincicek, Arton Berisha, Krishnendu Mukherjee, Bernhard Spengler, Andreas Römpp, and Andreas Vilcinskas
Biological Chemistry, 2009, Volume 390, Number 12

Comments (0)

Please log in or register to comment.
Log in