Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 388, Issue 2

Issues

Comparative thermodynamic analysis of cyclic nucleotide binding to protein kinase A

Daniela Moll
  • Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sonja Schweinsberg
  • Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Hammann
  • Research Group Molecular Interactions, Department of Genetics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Friedrich W. Herberg
  • Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-01-29 | DOI: https://doi.org/10.1515/BC.2007.018

Abstract

We have investigated the thermodynamic parameters and binding of a regulatory subunit of cAMP-dependent protein kinase (PKA) to its natural low-molecular-weight ligand, cAMP, and analogues thereof. For analysis of this model system, we compared side-by-side isothermal titration calorimetry (ITC) with surface plasmon resonance (SPR). Both ITC and SPR analyses revealed that binding of the protein to cAMP or its analogues was enthalpically driven and characterised by similar free energy values (ΔG=-9.4 to -10.7 kcal mol-1) for all interactions. Despite the similar affinities, binding of the cyclic nucleotides used here was characterised by significant differences in the contribution of entropy (-TΔS) and enthalpy (ΔH) to ΔG. The comparison of ITC and SPR data for one cAMP analogue further revealed deviations caused by the method. These equilibrium parameters could be complemented by thermodynamic data of the transition state (ΔH , ΔG , ΔS ) for both association and dissociation measured by SPR. This direct comparison of ITC and SPR highlights method-specific advantages and drawbacks for thermodynamic analyses of protein/ligand interactions.

Keywords: cAMP-dependent protein kinase; isothermal titration calorimetry; protein-ligand interaction; surface plasmon resonance

About the article

Corresponding author


Received: August 29, 2006

Accepted: October 20, 2006

Published Online: 2007-01-29

Published in Print: 2007-02-01


Citation Information: Biological Chemistry, Volume 388, Issue 2, Pages 163–172, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2007.018.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sabine Bachmaier, Yuri Volpato Santos, Susanne Kramer, George Boniface Githure, Thomas Klöckner, Julia Pepperl, Cordula Baums, Robin Schenk, Frank Schwede, Hans-Gottfried Genieser, Jean-William Dupuy, Ignasi Forné, Axel Imhof, Jerôme Basquin, Esben Lorentzen, and Michael Boshart
Nature Communications, 2019, Volume 10, Number 1
[2]
Marco Lolicato, Marco Nardini, Sabrina Gazzarrini, Stefan Möller, Daniela Bertinetti, Friedrich W. Herberg, Martino Bolognesi, Holger Martin, Marina Fasolini, Jay A. Bertrand, Cristina Arrigoni, Gerhard Thiel, and Anna Moroni
Journal of Biological Chemistry, 2011, Volume 286, Number 52, Page 44811
[3]
Dene R. Littler, Hayley E. Bullen, Katherine L. Harvey, Travis Beddoe, Brendan S. Crabb, Jamie Rossjohn, and Paul R. Gilson
Journal of Biological Chemistry, 2016, Volume 291, Number 49, Page 25375
[4]
Maria Winiewska, Ewa Bugajska, Jarosław Poznański, and Eugene A. Permyakov
PLOS ONE, 2017, Volume 12, Number 3, Page e0173260
[5]
Kaido Viht, Sonja Schweinsberg, Marje Lust, Angela Vaasa, Gerda Raidaru, Darja Lavogina, Asko Uri, and Friedrich W. Herberg
Analytical Biochemistry, 2007, Volume 362, Number 2, Page 268
[6]
Xueming Li, Siyu Song, Qi Shuai, Yihan Pei, Teodor Aastrup, Yuxin Pei, and Zhichao Pei
Scientific Reports, 2015, Volume 5, Number 1
[7]
Robert D. Malmstrom, Alexandr P. Kornev, Susan S. Taylor, and Rommie E. Amaro
Nature Communications, 2015, Volume 6, Page 7588
[8]
Amr El-Hawiet, Elena N. Kitova, and John S. Klassen
Biochemistry, 2012, Volume 51, Number 21, Page 4244
[9]
Stefania Gessi, Eleonora Fogli, Valeria Sacchetto, Katia Varani, Stefania Merighi, Edward Leung, Stephen Mac Lennan, and Pier Andrea Borea
Biochemical Pharmacology, 2008, Volume 75, Number 2, Page 562
[10]
Julia E. Weigand, Sina R. Schmidtke, Tristan J. Will, Elke Duchardt-Ferner, Christian Hammann, Jens Wöhnert, and Beatrix Suess
Nucleic Acids Research, 2011, Volume 39, Number 8, Page 3363
[11]
O. N. Rogacheva, A. V. Popov, E. V. Savvateeva-Popova, V. E. Stefanov, and B. F. Shchegolev
Biochemistry (Moscow), 2010, Volume 75, Number 2, Page 233
[12]
Rebecca L. Rich and David G. Myszka
Journal of Molecular Recognition, 2008, Volume 21, Number 6, Page 355
[13]
Saša Bjelić and Ilian Jelesarov
Journal of Molecular Recognition, 2008, Volume 21, Number 5, Page 289
[14]
Sonja Schweinsberg, Daniela Moll, Nicole C. G. Burghardt, Claudia Hahnefeld, Frank Schwede, Bastian Zimmermann, Stephan Drewianka, Lars Werner, Frank Kleinjung, Hans-Gottfried Genieser, Johannes Schuchhardt, and Friedrich W. Herberg
PROTEOMICS, 2008, Volume 8, Number 6, Page 1212

Comments (0)

Please log in or register to comment.
Log in