Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2017: 3.022

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 389, Issue 4

Issues

5′-End maturation of tRNA in Aquifex aeolicus

Michal Marszalkowski
  • 1Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dagmar K. Willkomm
  • 2Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roland K. Hartmann
  • 3Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-03-27 | DOI: https://doi.org/10.1515/BC.2008.042

Abstract

5′-End maturation of tRNA primary transcripts is thought to be ubiquitously catalyzed by ribonuclease P (RNase P), a ribonucleoprotein enzyme in the vast majority of organisms and organelles. In the hyperthermophilic bacterium Aquifex aeolicus, neither a gene for the RNA nor the protein component of bacterial RNase P has been identified in its sequenced genome. Here, we demonstrate the presence of an RNase P-like activity in cell lysates of A. aeolicus. Detection of activity was sensitive to the buffer conditions during cell lysis and partial purification, explaining why we failed to observe activity in the buffer system applied previously. RNase P-like activity of A. aeolicus depends on the presence of Mg2+ or Mn2+, persists at high temperatures, which inactivate RNase P enzymes from mesophilic bacteria, and is remarkably resistant to micrococcal nuclease treatment. While cellular RNA fractions from other Aquificales (A. pyrophilus, Hydrogenobacter thermophilus and Thermocrinis ruber) could be stimulated by bacterial RNase P proteins to catalyze tRNA 5′-end maturation, no such stimulation was observed with RNA from A. aeolicus. In conclusion, our results point to the possibility that RNase P-like activity in A. aeolicus is devoid of an RNA subunit or may include an RNA subunit with untypical features.

Keywords: Aquifex aeolicus; Aquifex pyrophilus; Aquificales; RNase P; rnpA

About the article

Corresponding author


Received: 2007-11-07

Accepted: 2007-12-12

Published Online: 2008-03-27

Published in Print: 2008-04-01


Citation Information: Biological Chemistry, Volume 389, Issue 4, Pages 395–403, ISSN (Online) 14374315, ISSN (Print) 14316730, DOI: https://doi.org/10.1515/BC.2008.042.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Astrid I. Nickel, Nadine B. Wäber, Markus Gößringer, Isabell Schencking, and Roland K. Hartmann
BIOspektrum, 2018, Volume 24, Number 6, Page 582
[2]
Astrid I. Nickel, Nadine B. Wäber, Markus Gößringer, Marcus Lechner, Uwe Linne, Ursula Toth, Walter Rossmanith, and Roland K. Hartmann
Proceedings of the National Academy of Sciences, 2017, Volume 114, Number 42, Page 11121
[3]
Rafal Tomecki, Pawel J. Sikorski, and Monika Zakrzewska-Placzek
FEBS Letters, 2017, Volume 591, Number 13, Page 1801
[4]
Nadia Brillante, Markus Gößringer, Dominik Lindenhofer, Ursula Toth, Walter Rossmanith, and Roland K. Hartmann
Nucleic Acids Research, 2016, Volume 44, Number 5, Page 2323
[5]
Dorota Matelska, Malgorzata Kurkowska, Elzbieta Purta, Janusz M. Bujnicki, and Stanislaw Dunin-Horkawicz
Genome Biology and Evolution, 2016, Volume 8, Number 2, Page 426
[6]
Aaron Hernandez-Cid, Sergio Aguirre-Sampieri, Adelaida Diaz-Vilchis, and Alfredo Torres-Larios
IUBMB Life, 2012, Volume 64, Number 6, Page 521
[7]
Walter Rossmanith
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, Volume 1819, Number 9-10, Page 1017
[8]
Johann Holzmann, Peter Frank, Esther Löffler, Keiryn L. Bennett, Christopher Gerner, and Walter Rossmanith
Cell, 2008, Volume 135, Number 3, Page 462
[9]
Zhongjie Shi, Rhonda H. Nicholson, Ritu Jaggi, and Allen W. Nicholson
Nucleic Acids Research, 2011, Volume 39, Number 7, Page 2756
[10]
L. B. Lai, P. P. Chan, A. E. Cozen, D. L. Bernick, J. W. Brown, V. Gopalan, and T. M. Lowe
Proceedings of the National Academy of Sciences, 2010, Volume 107, Number 52, Page 22493
[11]
Cecília M. Arraiano, José M. Andrade, Susana Domingues, Inês B. Guinote, Michal Malecki, Rute G. Matos, Ricardo N. Moreira, Vânia Pobre, Filipa P. Reis, Margarida Saramago, Inês J. Silva, and Sandra C. Viegas
FEMS Microbiology Reviews, 2010, Volume 34, Number 5, Page 883

Comments (0)

Please log in or register to comment.
Log in