Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 389, Issue 9

Issues

Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGAP interaction

Lothar Gremer
  • 1Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, D-44227 Dortmund, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernd Gilsbach
  • 2Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, D-44227 Dortmund, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Reza Ahmadian
  • 3Institut für Biochemie und Molekularbiologie II, Klinikum der Heinrich-Heine-Universität, Universitätsstraße 1, Gebäude 22.03, D-40225 Düsseldorf, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alfred Wittinghofer
  • 4Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, D-44227 Dortmund, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-08-19 | DOI: https://doi.org/10.1515/BC.2008.132

Abstract

Down-regulation of Ras signalling is mediated by specific GTPase-activating proteins (GAPs), which stimulate the very slow GTPase reaction of Ras by 105-fold. The basic features of the GAP activity involve the stabilisation of both switch regions of Ras in the transition state, and the insertion of an arginine finger. In the case of oncogenic Ras mutations, the features of the active site are disturbed. To understand these features in more detail, we investigated the effects of oncogenic mutations of Ras and compared the GAP-stimulated GTPase reaction with the ability to form GAP-mediated aluminium or beryllium fluoride complexes. In general, we found a correlation between the size of the amino acid at position 12, the GTPase activity and ability to form aluminium fluoride complexes. While Gly12 is very sensitive to even the smallest possible structural change, Gly13 is much less sensitive to steric hindrance, but is sensitive to charge. Oncogenic mutants of Ras defective in the GTPase activity can however form ground-state GppNHp complexes with GAP, which can be mimicked by beryllium fluoride binding. We show that beryllium fluoride complexes are less sensitive to structural changes and report on a state close to but different from the ground state of the GAP-stimulated GTPase reaction.

Keywords: aluminium fluoride; beryllium fluoride; GTPase; GTPase-activating protein; neurofibromin; oncogene; Ras; transition state

About the article

Corresponding author


Received: 2007-12-23

Accepted: 2008-04-01

Published Online: 2008-08-19

Published in Print: 2008-09-01


Citation Information: Biological Chemistry, Volume 389, Issue 9, Pages 1163–1171, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2008.132.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dana Rabara, Timothy H. Tran, Srisathiyanarayanan Dharmaiah, Robert M. Stephens, Frank McCormick, Dhirendra K. Simanshu, and Matthew Holderfield
Proceedings of the National Academy of Sciences, 2019, Page 201908353
[2]
Thomas McFall, Jolene K. Diedrich, Meron Mengistu, Stacy L. Littlechild, Kendra V. Paskvan, Laura Sisk-Hackworth, James J. Moresco, Andrey S. Shaw, and Edward C. Stites
Science Signaling, 2019, Volume 12, Number 600, Page eaaw8288
[3]
Yline Capri, Elisabetta Flex, Oliver H.F. Krumbach, Giovanna Carpentieri, Serena Cecchetti, Christina Lißewski, Soheila Rezaei Adariani, Denny Schanze, Julia Brinkmann, Juliette Piard, Francesca Pantaleoni, Francesca R. Lepri, Elaine Suk-Ying Goh, Karen Chong, Elliot Stieglitz, Julia Meyer, Alma Kuechler, Nuria C. Bramswig, Stephanie Sacharow, Marion Strullu, Yoann Vial, Cédric Vignal, George Kensah, Goran Cuturilo, Neda S. Kazemein Jasemi, Radovan Dvorsky, Kristin G. Monaghan, Lisa M. Vincent, Hélène Cavé, Alain Verloes, Mohammad R. Ahmadian, Marco Tartaglia, and Martin Zenker
The American Journal of Human Genetics, 2019, Volume 104, Number 6, Page 1223
[4]
Klaus Scheffzek and Giridhar Shivalingaiah
Cold Spring Harbor Perspectives in Medicine, 2019, Volume 9, Number 3, Page a031500
[5]
Ian P. Winters, Shin-Heng Chiou, Nicole K. Paulk, Christopher D. McFarland, Pranav V. Lalgudi, Rosanna K. Ma, Leszek Lisowski, Andrew J. Connolly, Dmitri A. Petrov, Mark A. Kay, and Monte M. Winslow
Nature Communications, 2017, Volume 8, Number 1
[6]
Shenyuan Xu, Brian N. Long, Gabriel H. Boris, Anqi Chen, Shuisong Ni, and Michael A. Kennedy
Acta Crystallographica Section D Structural Biology, 2017, Volume 73, Number 12, Page 970
[7]
A Gress, V Ramensky, and O V Kalinina
Oncogenesis, 2017, Volume 6, Number 9, Page e380
[8]
Manpreet Kalkat, Jason De Melo, Katherine Hickman, Corey Lourenco, Cornelia Redel, Diana Resetca, Aaliya Tamachi, William Tu, and Linda Penn
Genes, 2017, Volume 8, Number 6, Page 151
[9]
Ashwini K. Mishra and David G. Lambright
Biopolymers, 2016, Volume 105, Number 8, Page 431
[10]
Kevin Molloy, Rudy Clausen, and Amarda Shehu
Robotica, 2016, Volume 34, Number 08, Page 1705
[11]
Susan K. Fetics, Hugo Guterres, Bradley M. Kearney, Greg Buhrman, Buyong Ma, Ruth Nussinov, and Carla Mattos
Structure, 2015, Volume 23, Number 3, Page 505
[12]
G Aaron Hobbs, Harsha P Gunawardena, Rachael Baker, Xian Chen, and Sharon L Campbell
Small GTPases, 2013, Volume 4, Number 3, Page 186
[13]
I. C. Cirstea, L. Gremer, R. Dvorsky, S.-C. Zhang, R. P. Piekorz, M. Zenker, and M. R. Ahmadian
Human Molecular Genetics, 2013, Volume 22, Number 2, Page 262
[14]
Mandy Miertzschke, Carolin Koerner, Ingrid R Vetter, Daniela Keilberg, Edina Hot, Simone Leonardy, Lotte Søgaard-Andersen, and Alfred Wittinghofer
The EMBO Journal, 2011, Volume 30, Number 20, Page 4185
[15]
Olivier Barbier, Laura Arreola-Mendoza, and Luz María Del Razo
Chemico-Biological Interactions, 2010, Volume 188, Number 2, Page 319
[16]
Lothar Gremer, Torsten Merbitz-Zahradnik, Radovan Dvorsky, Ion C. Cirstea, Christian Peter Kratz, Martin Zenker, Alfred Wittinghofer, and Mohammad Reza Ahmadian
Human Mutation, 2011, Volume 32, Number 1, Page 33
[17]
Simone Leonardy, Mandy Miertzschke, Iryna Bulyha, Eva Sperling, Alfred Wittinghofer, and Lotte Søgaard-Andersen
The EMBO Journal, 2010, Volume 29, Number 14, Page 2276
[18]
Lothar Gremer, Alessandro De Luca, Torsten Merbitz-Zahradnik, Bruno Dallapiccola, Susanne Morlot, Marco Tartaglia, Kerstin Kutsche, Mohammad Reza Ahmadian, and Georg Rosenberger
Human Molecular Genetics, 2010, Volume 19, Number 5, Page 790
[19]
Raphael Gasper, Simon Meyer, Katja Gotthardt, Minhajuddin Sirajuddin, and Alfred Wittinghofer
Nature Reviews Molecular Cell Biology, 2009, Volume 10, Number 6, Page 423

Comments (0)

Please log in or register to comment.
Log in