Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Thomas, Douglas D.

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2015: 1.607
Source Normalized Impact per Paper (SNIP) 2015: 0.751

See all formats and pricing
In This Section
Volume 392, Issue 4 (Apr 2011)


Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes

Sinan Al-Attar
  • Laboratory of Microbiology, Wageningen University, Dreijenplein 10, NL-6703 HB Wageningen, The Netherlands
/ Edze R. Westra
  • Laboratory of Microbiology, Wageningen University, Dreijenplein 10, NL-6703 HB Wageningen, The Netherlands
/ John van der Oost
  • Laboratory of Microbiology, Wageningen University, Dreijenplein 10, NL-6703 HB Wageningen, The Netherlands
/ Stan J.J. Brouns
  • Laboratory of Microbiology, Wageningen University, Dreijenplein 10, NL-6703 HB Wageningen, The Netherlands
  • Email:
Published Online: 2011-07-25 | DOI: https://doi.org/10.1515/bc.2011.042


Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' ‘immunological memory’. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

Keywords: anti-phage; Cas proteins; small RNAs; spacers

About the article

Corresponding author

Received: 2010-10-27

Accepted: 2010-12-27

Published Online: 2011-07-25

Published in Print: 2011-04-01

Citation Information: Biological Chemistry, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/bc.2011.042. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xinyi He, Victoria Hull, Julie A. Thomas, Xiaoqing Fu, Sonal Gidwani, Yogesh K. Gupta, Lindsay W. Black, and Shuang-yong Xu
Scientific Reports, 2015, Volume 5, Page 9747
Li-Fang Chou, Ting-Wen Chen, Yi-Ching Ko, Ming-Jeng Pan, Ya-Chung Tian, Cheng-Hsun Chiu, Petrus Tang, Cheng-Chieh Hung, and Chih-Wei Yang
Emerging Microbes & Infections, 2014, Volume 3, Number 11, Page e82
Stephen T. Abedon
Bacteriophage, 2011, Volume 1, Number 3, Page 179
Ajla Hrle, Lisa-Katharina Maier, Kundan Sharma, Judith Ebert, Claire Basquin, Henning Urlaub, Anita Marchfelder, and Elena Conti
RNA Biology, 2014, Volume 11, Number 8, Page 1072
Z. Arslan, V. Hermanns, R. Wurm, R. Wagner, and U. Pul
Nucleic Acids Research, 2014, Volume 42, Number 12, Page 7884
M. Jinek, F. Jiang, D. W. Taylor, S. H. Sternberg, E. Kaya, E. Ma, C. Anders, M. Hauer, K. Zhou, S. Lin, M. Kaplan, A. T. Iavarone, E. Charpentier, E. Nogales, and J. A. Doudna
Science, 2014, Volume 343, Number 6176, Page 1247997
O. Niewoehner, M. Jinek, and J. A. Doudna
Nucleic Acids Research, 2014, Volume 42, Number 2, Page 1341
Lisa Nickel, Katrin Weidenbach, Dominik Jäger, Rolf Backofen, Sita J. Lange, Nadja Heidrich, and Ruth A. Schmitz
RNA Biology, 2013, Volume 10, Number 5, Page 779
S. J. Lange, O. S. Alkhnbashi, D. Rose, S. Will, and R. Backofen
Nucleic Acids Research, 2013, Volume 41, Number 17, Page 8034
Anita Marchfelder, Lisa-Katharina Maier, Nadja Heidrich, and Ümit Pul
Biologie in unserer Zeit, 2013, Volume 43, Number 3, Page 158
Z. Arslan, R. Wurm, O. Brener, P. Ellinger, L. Nagel-Steger, F. Oesterhelt, L. Schmitt, D. Willbold, R. Wagner, H. Gohlke, S. H. J. Smits, and U. Pul
Nucleic Acids Research, 2013, Volume 41, Number 12, Page 6347
Rodolphe Barrangou
Wiley Interdisciplinary Reviews: RNA, 2013, Volume 4, Number 3, Page 267
David Paez-Espino, Wesley Morovic, Christine L. Sun, Brian C. Thomas, Ken-ichi Ueda, Buffy Stahl, Rodolphe Barrangou, and Jillian F. Banfield
Nature Communications, 2013, Volume 4, Page 1430
Tomas Sinkunas, Giedrius Gasiunas, Sakharam P Waghmare, Mark J Dickman, Rodolphe Barrangou, Philippe Horvath, and Virginijus Siksnys
The EMBO Journal, 2013, Volume 32, Number 3, Page 385
Edze R. Westra, Daan C. Swarts, Raymond H.J. Staals, Matthijs M. Jore, Stan J.J. Brouns, and John van der Oost
Annual Review of Genetics, 2012, Volume 46, Number 1, Page 311
D. Trautmann, B. Voss, A. Wilde, S. Al-Babili, and W. R. Hess
DNA Research, 2012, Volume 19, Number 6, Page 435
Anja Spang, Anja Poehlein, Pierre Offre, Sabine Zumbrägel, Susanne Haider, Nicolas Rychlik, Boris Nowka, Christel Schmeisser, Elena V. Lebedeva, Thomas Rattei, Christoph Böhm, Markus Schmid, Alexander Galushko, Roland Hatzenpichler, Thomas Weinmaier, Rolf Daniel, Christa Schleper, Eva Spieck, Wolfgang Streit, and Michael Wagner
Environmental Microbiology, 2012, Volume 14, Number 12, Page 3122
Lei Qi, Rachel E Haurwitz, Wenjun Shao, Jennifer A Doudna, and Adam P Arkin
Nature Biotechnology, 2012, Volume 30, Number 10, Page 1002
Marko Djordjevic and Magdalena Djordjevic
Physical Biology, 2012, Volume 9, Number 5, Page 056004
Rebekah A. Frampton, Andrew R. Pitman, and Peter C. Fineran
International Journal of Microbiology, 2012, Volume 2012, Page 1
Rodolphe Barrangou and Philippe Horvath
Annual Review of Food Science and Technology, 2012, Volume 3, Number 1, Page 143
Rachel E Haurwitz, Samuel H Sternberg, and Jennifer A Doudna
The EMBO Journal, 2012, Volume 31, Number 12, Page 2824
Philipp Ellinger, Zihni Arslan, Reinhild Wurm, Britta Tschapek, Colin MacKenzie, Klaus Pfeffer, Santosh Panjikar, Rolf Wagner, Lutz Schmitt, Holger Gohlke, Ümit Pul, and Sander H.J. Smits
Journal of Structural Biology, 2012, Volume 178, Number 3, Page 350
Blake Wiedenheft, Samuel H. Sternberg, and Jennifer A. Doudna
Nature, 2012, Volume 482, Number 7385, Page 331
N. Delihas
Genome Biology and Evolution, 2011, Volume 3, Number 0, Page 959
Devaki Bhaya, Michelle Davison, and Rodolphe Barrangou
Annual Review of Genetics, 2011, Volume 45, Number 1, Page 273
Gregory R. Richards and Carin K. Vanderpool
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2011, Volume 1809, Number 10, Page 525
Dagmar Klostermeier
Biological Chemistry, 2011, Volume 392, Number 4
Kira S. Makarova, Daniel H. Haft, Rodolphe Barrangou, Stan J. J. Brouns, Emmanuelle Charpentier, Philippe Horvath, Sylvain Moineau, Francisco J. M. Mojica, Yuri I. Wolf, Alexander F. Yakunin, John van der Oost, and Eugene V. Koonin
Nature Reviews Microbiology, 2011, Volume 9, Number 6, Page 467

Comments (0)

Please log in or register to comment.
Log in