Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 393, Issue 4

Issues

The proteasome: molecular machinery and pathophysiological roles

Keiji Tanaka
  • Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tsunehiro Mizushima
  • Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yasushi Saeki
  • Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar

Abstract

The 26S proteasome, in collaboration with ubiquitin, operates the energy-dependent regulated proteolysis process in eukaryotic cells. Over the past 30 years, several studies have comprehensively characterized the structure and molecular/physiological functions of the 26S proteasome. It is a sophisticated 2.5-MDa protein degradation machine comprising a proteolytic core particle (CP) and one or two terminal regulatory particle(s) (RP). The CP consists of two outer α rings and two inner β rings, which are made up of seven structurally similar α and β subunits, respectively. The CP contains catalytic threonine residues (β1, β2, and β5; caspase-like, trypsin-like, and chymotrypsin-like activities, respectively) on the inner surface of the chamber formed by two abutting β rings. Intriguingly, the immunotype proteasomes, named ‘immunoproteasome’ and ‘thymoproteasome’, whose catalytic subunits are replaced by the related counterparts, were discovered lately. Both unique isoenzymes essentially contribute to the acquisition of adaptive immunity in vertebrates. The RP, which serves to recognize polyubiquitylated substrate proteins and plays a role in their deubiquitylating, unfolding, and translocation into the interior of the CP for destruction, forms two subcomplexes: the base and the lid. On another front, the PA28 and PA200, alternative CP activator proteins discovered biochemically, both play independent roles in proteolysis of the 26S proteasome. Several studies have highlighted the importance of the proteasome in various intractable diseases that have been increasing in the aged society of the 21st century.

Keywords: 20S and 26S proteasomes; immunoproteasome; RP; thymoproteasome; ubiquitin

About the article

Corresponding author


Received: 2011-12-12

Accepted: 2012-02-08

Published in Print: 2012-04-01


Citation Information: Biological Chemistry, Volume 393, Issue 4, Pages 217–234, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2011-0285.

Export Citation

©2012 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Elisabetta Bandiera, Paola Todeschini, Chiara Romani, Laura Zanotti, Eugenio Erba, Benedetta Colmegna, Eliana Bignotti, Alessandro Davide Santin, Enrico Sartori, Franco Edoardo Odicino, Sergio Pecorelli, Renata Alessandra Tassi, and Antonella Ravaggi
Oncology Letters, 2016, Volume 12, Number 4, Page 2493
[2]
Corey L. Jones, Evert Njomen, Benita Sjögren, Thomas S. Dexheimer, and Jetze J. Tepe
ACS Chemical Biology, 2017
[3]
Wissam Mansour, Mark A. Nakasone, Maximilian von Delbrück, Zanlin Yu, Daria Krutauz, Noa Reis, Oded Kleifeld, Thomas Sommer, David Fushman, and Michael H. Glickman
Journal of Biological Chemistry, 2015, Volume 290, Number 8, Page 4688
[4]
Shiori Akabane, Kohei Matsuzaki, Shun-ichi Yamashita, Kana Arai, Kei Okatsu, Tomotake Kanki, Noriyuki Matsuda, and Toshihiko Oka
Journal of Biological Chemistry, 2016, Volume 291, Number 31, Page 16162
[5]
Isao Momose and Takumi Watanabe
The Journal of Antibiotics, 2017, Volume 70, Number 5, Page 542
[6]
Christian Perez, Jing Li, Francesco Parlati, Matthieu Rouffet, Yuyong Ma, Andrew L. Mackinnon, Tsui-Fen Chou, Raymond J. Deshaies, and Seth M. Cohen
Journal of Medicinal Chemistry, 2017, Volume 60, Number 4, Page 1343
[7]
Yasushi Saeki
Journal of Biochemistry, 2017, Page mvw091
[8]
Antonio Pereira-Neves, Luiz Gonzaga, Rubem F. S. Menna-Barreto, Marlene Benchimol, and Jose G. Castaño
PLOS ONE, 2015, Volume 10, Number 6, Page e0129165
[9]
Sumeet K. Singh, Indrajit Sahu, Sachitanand M. Mali, Hosahalli P. Hemantha, Oded Kleifeld, Michael H. Glickman, and Ashraf Brik
Journal of the American Chemical Society, 2016, Volume 138, Number 49, Page 16004
[10]
Adrien Rousseau and Anne Bertolotti
Nature, 2016, Volume 536, Number 7615, Page 184
[11]
Melanie Gruner, Anja Moncsek, Stefan Rödiger, Dagmar Kühnhardt, Eugen Feist, and Ralf Stohwasser
BMC Musculoskeletal Disorders, 2014, Volume 15, Number 1
[12]
Takaki Furuyama, Shinji Tanaka, Shu Shimada, Yoshimitsu Akiyama, Satoshi Matsumura, Yusuke Mitsunori, Arihiro Aihara, Daisuke Ban, Takanori Ochiai, Atsushi Kudo, Hiroshi Fukamachi, Shigeki Arii, Yoshiya Kawaguchi, and Minoru Tanabe
Scientific Reports, 2016, Volume 6, Number 1
[13]
Antonio Pereira-Neves, Rubem F. S. Menna-Barreto, and Marlene Benchimol
Parasitology Research, 2016, Volume 115, Number 8, Page 3057
[14]
Nisha Durand, Sahra Borges, and Peter Storz
Journal of Clinical Medicine, 2016, Volume 5, Number 2, Page 20
[15]
Yasushi SAEKI
Seibutsu Butsuri, 2015, Volume 55, Number 1, Page 019
[16]
Flora De Conto, Carlo Chezzi, Alessandra Fazzi, Sergey V. Razin, Maria Cristina Arcangeletti, Maria Cristina Medici, Rita Gatti, and Adriana Calderaro
Cellular and Molecular Biology Letters, 2015, Volume 20, Number 5
[17]
Isao Momose and Manabu Kawada
International Immunopharmacology, 2016, Volume 37, Page 23
[18]
Nora Semren, Vanessa Welk, Martina Korfei, Ilona E. Keller, Isis E. Fernandez, Heiko Adler, Andreas Günther, Oliver Eickelberg, and Silke Meiners
American Journal of Respiratory and Critical Care Medicine, 2015, Volume 192, Number 9, Page 1089
[20]
Natalia Gruba, Magdalena Wysocka, Magdalena Brzezińska, Dawid Debowski, Krzysztof Rolka, Nathaniel I. Martin, and Adam Lesner
Analytical Biochemistry, 2016, Volume 508, Page 38
[21]
Zanlin Yu, Nurit Livnat‑Levanon, Oded Kleifeld, Wissam Mansour, Mark A. Nakasone, Carlos A. Castaneda, Emma K. Dixon, David Fushman, Noa Reis, Elah Pick, and Michael H. Glickman
Bioscience Reports, 2015, Volume 35, Number 3, Page 1
[22]
Corina O. Bondi, Bridgette D. Semple, Linda J. Noble-Haeusslein, Nicole D. Osier, Shaun W. Carlson, C. Edward Dixon, Christopher C. Giza, and Anthony E. Kline
Neuroscience & Biobehavioral Reviews, 2015, Volume 58, Page 123
[23]
Christopher C. Giza and David A. Hovda
Neurosurgery, 2014, Volume 75, Page S24
[24]
Oliver Drews and Heinrich Taegtmeyer
Antioxidants & Redox Signaling, 2014, Volume 21, Number 17, Page 2322
[25]
Zhu Chao Gu and Cordula Enenkel
Cellular and Molecular Life Sciences, 2014, Volume 71, Number 24, Page 4729
[26]
Ariane Hanssum, Zhen Zhong, Adrien Rousseau, Agnieszka Krzyzosiak, Anna Sigurdardottir, and Anne Bertolotti
Molecular Cell, 2014, Volume 55, Number 4, Page 566
[27]
Kenji Takagi, Yasushi Saeki, Hideki Yashiroda, Hirokazu Yagi, Ai Kaiho, Shigeo Murata, Takashi Yamane, Keiji Tanaka, Tsunehiro Mizushima, and Koichi Kato
Biochemical and Biophysical Research Communications, 2014, Volume 450, Number 2, Page 1110
[28]
Tiziana Bachetti and Isabella Ceccherini
Journal of Molecular Medicine, 2014, Volume 92, Number 6, Page 583
[29]
Silke Meiners, Ilona Elisabeth Keller, Nora Semren, and Anne Caniard
Antioxidants & Redox Signaling, 2014, Volume 21, Number 17, Page 2364
[30]
Nicola Micale, Kety Scarbaci, Valeria Troiano, Roberta Ettari, Silvana Grasso, and Maria Zappalà
Medicinal Research Reviews, 2014, Volume 34, Number 5, Page 1001
[31]
Marzia Perluigi, Fabio Di Domenico, and D. Allan Buttterfield
PROTEOMICS - Clinical Applications, 2014, Volume 8, Number 1-2, Page 73
[32]
R. Coppo
Nephrology Dialysis Transplantation, 2014, Volume 29, Number suppl 1, Page i25
[33]
Guillem Paniagua Soriano, Gerjan De Bruin, Herman S. Overkleeft, and Bogdan I. Florea
Antioxidants & Redox Signaling, 2014, Volume 21, Number 17, Page 2419
[34]
Maximilian Wei-Lin Popp and Lynne E. Maquat
Annual Review of Genetics, 2013, Volume 47, Number 1, Page 139
[35]
Derek J. Erstad and James C. Cusack
Surgical Oncology Clinics of North America, 2013, Volume 22, Number 4, Page 705
[36]
Anna Villar-Piqué and Salvador Ventura
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013, Volume 1833, Number 12, Page 2714
[37]
Ziad M. Eletr and Keith D. Wilkinson
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2014, Volume 1843, Number 1, Page 114
[38]
Katsuhiko Ariga, Qingmin Ji, Taizo Mori, Masanobu Naito, Yusuke Yamauchi, Hideki Abe, and Jonathan P. Hill
Chemical Society Reviews, 2013, Volume 42, Number 15, Page 6322
[39]
Hikaru Tsuchiya, Naoko Arai, Keiji Tanaka, and Yasushi Saeki
Biochemical and Biophysical Research Communications, 2013, Volume 436, Number 3, Page 372
[40]
Utano Tomaru and Masanori Kasahara
Archivum Immunologiae et Therapiae Experimentalis, 2013, Volume 61, Number 5, Page 357
[41]
Park F. Cho-Park and Hermann Steller
Cell, 2013, Volume 153, Number 3, Page 614
[42]
Keiji Tanaka and Noriyuki Matsuda
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2014, Volume 1843, Number 1, Page 197

Comments (0)

Please log in or register to comment.
Log in