Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Print + Online
See all formats and pricing
More options …
Volume 393, Issue 6

Issues

Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries

Elisabeth Eckers
  • Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marek Cyrklaff
  • Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Larry Simpson
  • Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcel Deponte
  • Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
  • Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar

Abstract

Mitochondrial protein import (MPI) is essential for the biogenesis of mitochondria in all eukaryotes. Current models of MPI are predominantly based on experiments with one group of eukaryotes, the opisthokonts. Although fascinating genome database-driven hypotheses on the evolution of the MPI machineries have been published, previous experimental research on non-opisthokonts usually focused on the analysis of single pathways or components in, for example, plants and parasites. In this study, we have established the kinetoplastid parasite Leishmania tarentolae as a model organism for the comprehensive analysis of non-opisthokont MPI into all four mitochondrial compartments. We found that opisthokont marker proteins are efficiently imported into isolated L. tarentolae mitochondria. Vice versa, L. tarentolae marker proteins of all compartments are also imported into mitochondria from yeast. The results are remarkable because only a few of the more than 25 classical components of the opisthokont MPI machineries are found in parasite genome databases. Our results demonstrate that different MPI pathways are functionally conserved among eukaryotes despite significant compositional differences of the MPI machineries. Moreover, our model system could lead to the identification of significantly altered or even novel MPI components in non-opisthokonts. Such differences might serve as starting points for drug development against parasitic protists.

This article offers supplementary material which is provided at the end of the article.

Keywords: kinetoplastid parasites; Leishmania tarentolae; mitochondria; protein transport

About the article

Corresponding author


Received: 2011-11-09

Accepted: 2012-02-20

Published in Print: 2012-06-01


Citation Information: , Volume 393, Issue 6, Pages 513–524, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2011-0255.

Export Citation

©2012 by Walter de Gruyter Berlin Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Abhishek Aich and Chandrima Shaha
Molecular and Cellular Biology, 2013, Volume 33, Number 22, Page 4579
[2]
Somsuvro Basu, Joanne C. Leonard, Nishal Desai, Despoina A. I. Mavridou, Kong Ho Tang, Alan D. Goddard, Michael L. Ginger, Julius Lukeš, and James W. A. Allen
Eukaryotic Cell, 2013, Volume 12, Number 2, Page 343
[3]
Katharina Ehrhardt, Elisabeth Davioud-Charvet, Hangjun Ke, Akhil B. Vaidya, Michael Lanzer, and Marcel Deponte
Antimicrobial Agents and Chemotherapy, 2013, Volume 57, Number 5, Page 2114
[4]
Natalia Mallo, Justin Fellows, Carla Johnson, and Lilach Sheiner
Genes, 2018, Volume 9, Number 8, Page 412
[5]
Joseph T. Smith, Ujjal K. Singha, Smita Misra, Minu Chaudhuri, and Margaret Phillips
mSphere, 2018, Volume 3, Number 3, Page e00204-18
[6]
Priscila Peña-Diaz, Jan Mach, Eva Kriegová, Pavel Poliak, Jan Tachezy, Julius Lukeš, and Ben L. Kelly
PLOS ONE, 2018, Volume 13, Number 4, Page e0196474
[7]
Christoph Wenger, Silke Oeljeklaus, Bettina Warscheid, André Schneider, Anke Harsman, and Kent L. Hill
PLOS Pathogens, 2017, Volume 13, Number 8, Page e1006550
[8]
Julia Bruggisser, Sandro Käser, Jan Mani, and André Schneider
Journal of Biological Chemistry, 2017, Volume 292, Number 8, Page 3400
[9]
Elisabeth Eckers, Carmelina Petrungaro, Dominik Gross, Jan Riemer, Kai Hell, and Marcel Deponte
Journal of Biological Chemistry, 2013, Volume 288, Number 4, Page 2676
[10]
Ujjal K. Singha, VaNae Hamilton, and Minu Chaudhuri
Journal of Biological Chemistry, 2015, Volume 290, Number 38, Page 23226
[11]
Nargis Parvin, Chris Carrie, Isabelle Pabst, Antonia Läßer, Debabrata Laha, Melanie V. Paul, Peter Geigenberger, Ralf Heermann, Kirsten Jung, Ute C. Vothknecht, and Fatima Chigri
Molecular Plant, 2017, Volume 10, Number 4, Page 575
[12]
Andreas Spitzmüller, Jordi Mestres, and Robert B. Russell
PLoS Computational Biology, 2013, Volume 9, Number 10, Page e1003257
[13]
Anke Harsman and André Schneider
Traffic, 2017, Volume 18, Number 2, Page 96
[14]
Anke Harsman, Silke Oeljeklaus, Christoph Wenger, Jonathan L. Huot, Bettina Warscheid, and André Schneider
Nature Communications, 2016, Volume 7, Page 13707
[15]
Michelle M. Leger, Laura Eme, Laura A. Hug, and Andrew J. Roger
Molecular Biology and Evolution, 2016, Volume 33, Number 9, Page 2318
[16]
Dorota Buczek, Małgorzata Wojtkowska, Yutaka Suzuki, Seiji Sonobe, Yukinori Nishigami, Monika Antoniewicz, Hanna Kmita, and Wojciech Makałowski
BMC Genomics, 2016, Volume 17, Number 1
[17]
Jan Mani, Chris Meisinger, and André Schneider
Molecular Biology and Evolution, 2016, Volume 33, Number 2, Page 337
[18]
Jan Mani, Silvia Desy, Moritz Niemann, Astrid Chanfon, Silke Oeljeklaus, Mascha Pusnik, Oliver Schmidt, Carolin Gerbeth, Chris Meisinger, Bettina Warscheid, and André Schneider
Nature Communications, 2015, Volume 6, Page 6646
[19]
João Henrique Frota Cavalcanti, Alberto A. Esteves-Ferreira, Carla G.S. Quinhones, Italo A. Pereira-Lima, Adriano Nunes-Nesi, Alisdair R. Fernie, and Wagner L. Araújo
Genome Biology and Evolution, 2014, Volume 6, Number 10, Page 2830
[20]
Kuldeep Singh, Niranjan K. Veluru, Vishal Trivedi, Chhitar M. Gupta, and Amogh A. Sahasrabuddhe
Molecular Microbiology, 2014, Volume 91, Number 3, Page 562
[21]
Monika W. Murcha, Yan Wang, Reena Narsai, and James Whelan
Biochimica et Biophysica Acta (BBA) - General Subjects, 2014, Volume 1840, Number 4, Page 1233
[22]
Marcel Deponte, Heinrich C. Hoppe, Marcus C.S. Lee, Alexander G. Maier, Dave Richard, Melanie Rug, Tobias Spielmann, and Jude M. Przyborski
Molecular and Biochemical Parasitology, 2012, Volume 186, Number 2, Page 95

Comments (0)

Please log in or register to comment.
Log in