Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 394, Issue 10

Issues

Current methods for the isolation of extracellular vesicles

Fatemeh Momen-Heravi
  • Laboratory for Innovative Translational Technologies, Harvard Medical School, 77 Louis Pasteur Avenue, Harvard Medical School, Boston, MA 02115, USA
  • These authors contributed equally to this work.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leonora Balaj
  • Laboratory for Innovative Translational Technologies, Harvard Medical School, 77 Louis Pasteur Avenue, Harvard Medical School, Boston, MA 02115, USA
  • Department of Neurology and Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
  • These authors contributed equally to this work.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sara Alian / Pierre-Yves Mantel
  • Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02120, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Allison E. Halleck
  • Laboratory for Innovative Translational Technologies, Harvard Medical School, 77 Louis Pasteur Avenue, Harvard Medical School, Boston, MA 02115, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander J. Trachtenberg
  • Laboratory for Innovative Translational Technologies, Harvard Medical School, 77 Louis Pasteur Avenue, Harvard Medical School, Boston, MA 02115, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cesar E. Soria / Shanice Oquin / Christina M. Bonebreak / Elif Saracoglu
  • Faculty of Dentistry, Istanbul University, Turgut Özal Caddesi (Millet Cd.), 34390 Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johan Skog / Winston Patrick Kuo
  • Corresponding author
  • Laboratory for Innovative Translational Technologies, Harvard Medical School, 77 Louis Pasteur Avenue, Harvard Medical School, Boston, MA 02115, USA
  • Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-14 | DOI: https://doi.org/10.1515/hsz-2013-0141

Abstract

Extracellular vesicles (EVs), including microvesicles and exosomes, are nano- to micron-sized vesicles, which may deliver bioactive cargos that include lipids, growth factors and their receptors, proteases, signaling molecules, as well as mRNA and non-coding RNA, released from the cell of origin, to target cells. EVs are released by all cell types and likely induced by mechanisms involved in oncogenic transformation, environmental stimulation, cellular activation, oxidative stress, or death. Ongoing studies investigate the molecular mechanisms and mediators of EVs-based intercellular communication at physiological and oncogenic conditions with the hope of using this information as a possible source for explaining physiological processes in addition to using them as therapeutic targets and disease biomarkers in a variety of diseases. A major limitation in this evolving discipline is the hardship and the lack of standardization for already challenging techniques to isolate EVs. Technical advances have been accomplished in the field of isolation with improving knowledge and emerging novel technologies, including ultracentrifugation, microfluidics, magnetic beads and filtration-based isolation methods. In this review, we will discuss the latest advances in methods of isolation methods and production of clinical grade EVs as well as their advantages and disadvantages, and the justification for their support and the challenges that they encounter.

Keywords: clinical grade EVs; exosomes; magnetic beads; microvesicles; sedimentation efficiency; ultracentrifugation

References

  • Alaniz, R.C., Deatherage, B.L., Lara, J.C., and Cookson, B.T. (2007). Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J. Immunol. 179, 7692–7701.Google Scholar

  • Antwi-Baffour, S., Kholia, S., Aryee, Y.K., Ansa-Addo, E.A., Stratton, D., Lange, S., and Inal, J.M. (2010). Human plasma membrane-derived vesicles inhibit the phagocytosis of apoptotic cells – possible role in SLE. Biochem. Biophys. Res. Commun. 398, 278–283.Google Scholar

  • Aoki, M., Kondo, M., Nakatsuka, Y., Kawai, K., and Oshima, S. (2007). Stationary phase culture supernatant containing membrane vesicles induced immunity to rainbow trout Oncorhynchus mykiss fry syndrome. Vaccine 25, 561–569.CrossrefGoogle Scholar

  • Ashcroft, B.A., de Sonneville, J., Yuana, Y., Osanto, S., Bertina, R., Kuil, M.E., and Oosterkamp, T.H. (2012). Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomed. Microdevices 14, 641–649.CrossrefGoogle Scholar

  • Azevedo, L.C., Pedro, M.A., and Laurindo, F.R. (2007). Circulating microparticles as therapeutic targets in cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov. 2, 41–51.CrossrefGoogle Scholar

  • Baj-Krzyworzeka, M., Szatanek, R., Weglarczyk, K., Baran, J., and Zembala, M. (2007). Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol. Lett. 113, 76–82.Google Scholar

  • Balaj, L., Lessard, R., Dai, L., Cho, Y.J., Pomeroy, S.L., Breakefield, X.O., and Skog, J. (2011). Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180.PubMedCrossrefGoogle Scholar

  • Bishop, A.L., Tarique, A.A., Patimalla, B., Calderwood, S.B., Qadri, F., and Camilli, A. (2012). Immunization of mice with Vibrio cholerae outer-membrane vesicles protects against hyperinfectious challenge and blocks transmission. J. Infect. Dis. 205, 412–421.Google Scholar

  • Bjune, G., Høiby, E.A., Grønnesby, J.K., Arnesen, O., Fredriksen, J.H., Halstensen, A., Holten, E., Lindbak, A.K., Nøkleby, H., and Rosenqvist, E. (1991). Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 338, 1093–1096.Google Scholar

  • Bu, N., Wu, H., Sun, B., Zhang, G., Zhan, S., Zhang, R., and Zhou, L. (2011). Exosome-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T cells in patients with glioma. J. Neurooncol. 104, 659–667.Google Scholar

  • Camacho, A.I., de Souza, J., Sánchez-Gómez, S., Pardo-Ros, M., Irache, J.M., and Gamazo, C. (2011). Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine 29, 8222–8229.CrossrefGoogle Scholar

  • Cantin, R., Diou, J., Bélanger, D., Tremblay, A.M., and Gilbert, C. (2008). Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J. Immunol. Methods 338, 21–30.Google Scholar

  • Chen, C., Skog, J., Hsu, C., Lessard, R.T., Balaj, L., Wurdinger, T., Carter, B.S., Breakefield, X.O., Toner, M., and Irimia, D. (2010). Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab. Chip. 10, 505–511.CrossrefPubMedGoogle Scholar

  • Cheruvanky, A., Zhou. H., Pisitkun, T., Kopp. J.B., Knepper M.A., Yuen P.S., and Star, R.A. (2007). Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am. J. Physiol. Renal Physiol. 292, 1657–1661.Google Scholar

  • Clayton, A., Court, J., Navabi, H., Adams, M., Mason, M.D., Hobot, J.A., Newman, G.R., and Jasani, B. (2001). Analysis of antigen presenting cell derived exosomes, based on immune-magnetic isolation and flow cytometry. J. Immunol. Methods 247, 163–174.Google Scholar

  • Coltel, N., Combes, V., Wassmer, S.C., Chimini, G., and Grau, G.E. (2006). Cell vesiculation and immunopathology: implications in cerebral malaria. Microbes Infect. 8, 2305–2316.CrossrefPubMedGoogle Scholar

  • Dai, S., Wei, D., Wu, Z., Zhou, X., Wei, X., Huang, H., and Li, G. (2008). Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790.CrossrefPubMedGoogle Scholar

  • Dalton, A.J. (1975). Microvesicles and vesicles of multivesicular bodies versus “virus-like” particles. J. Natl. Cancer Inst. 54, 1137–1148.Google Scholar

  • Dubyak, G.R. (2012). P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol. 14, 1697–1706.CrossrefPubMedGoogle Scholar

  • Ellis, T.N., Leiman, S.A., and Kuehn, M.J. (2010). Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect. Immun. 78, 3822–3831.CrossrefGoogle Scholar

  • Escudier, B., Dorval, T., Chaput, N., André, F., Caby, M.-P., Novault, S., Flament, C., Leboulaire, C., Borg, C., Amigorena, S., et al. (2005). Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl. Med. 3, 10.CrossrefGoogle Scholar

  • Fais, S., Logozzi, M., Lugini, L., Federici, C., Azzarito, T., Zarovni, N., and Chiesi, A. (2012). Exosomes: the ideal nanovectors for biodelivery. Biol. Chem. 394, 1–15.Google Scholar

  • Frasch, C.E., van Alphen, L., Holst, J., Poolman, J.T., and Rosenqvist, E. (2001). Outer membrane protein vesicle vaccines for meningococcal disease. Methods Mol. Med. 66, 81–107.Google Scholar

  • Gatti, S., Bruno, S., Deregibus, M.C., Sordi, A., Cantaluppi, V., Tetta, C., and Camussi, G. (2011). Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 26, 1474–1483.CrossrefPubMedGoogle Scholar

  • Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M.C., Tetta, C., Bussolati, B., and Camussi, G. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71, 5346–5356.PubMedCrossrefGoogle Scholar

  • Hata, T., Murakami, K., Nakatani, H., Yamamoto, Y., Matsuda, T., and Aoki, N. (2010). Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem. Biophys. Res. Commun. 396, 528–533.Google Scholar

  • Holst, J., Martin, D., Arnold, R., Huergo, C.C., Oster, P., O’Hallahan, J., and Rosenqvist, E. (2009). Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine. 27 (Suppl) 2, B3–12.CrossrefPubMedGoogle Scholar

  • Kalra, H., Simpson, R.J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V.C., Borràs, F.E., Breakefield, X., Budnik, V., et al. (2012). Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450.CrossrefGoogle Scholar

  • Keller, S., Ridinger, J., Rupp, A.K., Janssen, J. W., and Altevogt, P. (2011). Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 9, 86.CrossrefGoogle Scholar

  • Koga, K., Matsumoto, K., Akiyoshi, T., Kubo, M., Yamanaka, N., Tasaki, A., Nakashima, H., Nakamura, M., Kuroki, S., Tanaka, M., et al. (2005). Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res. 25, 3703–3708.PubMedGoogle Scholar

  • Lamparski, H.G., Metha-Damani, A., Yao, J.Y., Patel, S., Hsu, D.H., Ruegg, C., and Le Pecq, J.B. (2002). Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods. 270, 211–226.Google Scholar

  • Langer, K., Balthasar, S., Vogel, V., Dinauer, N., von Briesen, H., and Schubert, D. (2003). Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257, 169–180.Google Scholar

  • Lima, L.G., Chammas, R., Monteiro, R.Q., Moreira, M.E., and Barcinski, M.A. (2009). Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett. 8, 168–175.CrossrefGoogle Scholar

  • Luga, V., Zhang, L., Viloria-Petit, A.M., Ogunjimi, A.A., Inanlou, M.R., Chiu, E., Buchanan, M., Hosein, A.N., Basik, M., and Wrana, J.L. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 21, 1542–1556.CrossrefGoogle Scholar

  • Martin, D.R., Walker, S.J., Baker, M.G., and Lennon, D.R. (1998). New Zealand epidemic of meningococcal disease identified by a strain with phenotype B:4:P1.4. J. Infect. Dis. 177, 497–500.Google Scholar

  • Mathivanan, S. and Simpson, R.J. (2009). ExoCarta: A compendium of exosomal proteins and RNA. Proteomics 9, 4997–5000.PubMedCrossrefGoogle Scholar

  • Mathivanan, S., Lim, J.W.E., Tauro, B.J., Ji, H., Moritz, R.L., and Simpson, R.J. (2009). Proteomic analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell. Proteomics 9.2, 197–208.PubMedGoogle Scholar

  • Matzdorff, A.C., Berchner, D., Kühnel, G., Kemkes-Matthes, B., Pralle, H., and Voss, R. (1998). Relative and absolute changes of activated platelets, microparticles and platelet aggregates after activation in vitro. Haemostasis 28, 277–288.PubMedGoogle Scholar

  • McKechnie, N.M., King, B.C., Fletcher, E., and Braun, G. (2006). Fas-ligand is stored in secretory lysosomes of ocular barrier epithelia and released with microvesicles. Exp. Eye Res. 83, 304–314.PubMedCrossrefGoogle Scholar

  • Meng, Y., Kang, S., and Fishman, D.A. (2005). Lysophosphatidic acid stimulates fas ligand microvesicle release from ovarian cancer cells. Cancer Immunol. Immunother. 54, 807–814.CrossrefPubMedGoogle Scholar

  • Merchant, M.L., Powell, D.W., Wilkey D.W., Cummins T.D., Deegens J.K., Rood, I.M., McAfee, K.J., Fleischer, C., Klein, E., and Klein, J.B. (2010). Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin. Appl. 4, 84–96.CrossrefPubMedGoogle Scholar

  • Momen-Heravi, F., Balaj, L., Alian, S., Trachtenberg, A.J., Hochberg, F.H., Skog, J., and Kuo, W.P. (2012a). Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol. 3, 162.Google Scholar

  • Momen-Heravi, F., Balaj, L., Alian, S., Tigges, J., Toxavidis, V., Ericsson, M., Distel, R.J., Ivanov, A.R., Skog, J., and Kuo, W.P. (2012b). Alternative methods for characterization of extracellular vesicles. Front Physiol. 3, 354.Google Scholar

  • Morse, M.A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T.M., Valente, N., Shreeniwas, R., Sutton, M.A., Delcayre, A., et al. (2005). A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med. 3, 9.CrossrefPubMedGoogle Scholar

  • Müller, G. (2012). Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab. Syndr. Obes. 5, 247–282.CrossrefPubMedGoogle Scholar

  • Muralinath, M., Kuehn, M.J., Roland, K.L., and Curtiss, R. (2011). Immunization with Salmonella enterica serovar Typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect. Immun. 79, 887–894.CrossrefGoogle Scholar

  • Navabi, H., Croston, D., Hobot, J., Clayton, A., Zitvogel, L., Jasani, B., Bailey-Wood, R., Wilson, K., Tabi, Z., Mason, M.D., et al. (2005). Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cells Mol. Dis. 35, 149–152.Google Scholar

  • Nieves, W., Asakrah, S., Qazi, O., Brown, K.A., Kurtz, J., Aucoin, D.P., McLachlan, J.B., Roy, C.J., and Morici, L.A. (2011). A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine. 29, 8381–8389.CrossrefPubMedGoogle Scholar

  • Peinado, H., Alečković, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., García-Santos, G., Ghajar, C., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891.CrossrefPubMedGoogle Scholar

  • Raposo, G., Nijman, H.W., Stoorvogel, W., Liejendekker, R., Harding, C.V., Melief, C.J., and Geuze, H.J. (1996). B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172.Google Scholar

  • Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., and Ratajczak, M.Z. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487–1495.PubMedCrossrefGoogle Scholar

  • Scott, D.J., Harding, E., and Rowe, A.J. (2005). Analytical ultracentrifugation: techniques and methods. (Cambridge, UK: The Royal Society of Chemistry), pp. 273–276.Google Scholar

  • Shao, H., Min, C., Issadore, D., Liong, M., Yoon, T., Weissleder, R., and Lee, H. (2012). Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics 2, 55–65.CrossrefPubMedGoogle Scholar

  • Simpson, R.J. and Mathivanan, S. (2012). Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J. Proteomics Bioinform. 5, ii–ii. doi:10.4172/jpb.10000e10.CrossrefGoogle Scholar

  • Tappero, J.W., Lagos, R., Ballesteros, A.M., Plikaytis, B., Williams, D., Dykes, J., Gheesling, L.L., Carlone, G.M., Høiby, E.A., Holst, J., et al. (1999). Immunogenicity of 2 serogroup B outer-membrane protein meningococcal vaccines: a randomized controlled trial in Chile. J. Am. Med. Assoc. 281, 1520–1527.Google Scholar

  • Tauro, B.J., Greening, D.W., Mathias, R.A., Ji, H., Mathivinan, S., Scott, A.M., and Simpson, R.J. (2012). Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293–304.CrossrefGoogle Scholar

  • Taylor, D.D. and Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21.PubMedCrossrefGoogle Scholar

  • Taylor, D.D., Zacharias, W., and Gercel-Taylor, C. (2011). Exosome isolation for proteomic analyses and RNA profiling. Methods Mol. Biol. 728, 235–246.Google Scholar

  • Théry, C., Zitvogel, L., and Amigorena, S. (2002). Exosomes: Composition, Biogenesis, and Function. Nature Rev. 2, 569–578.Google Scholar

  • Théry, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22. DOI: 10.1002/0471143030.cb0322s30.CrossrefGoogle Scholar

  • Van de Waterbeemd, B., Streefland, M., van Keulen, L., van den Ijssel, J., de Haan, A., Eppink, M.H., and van der Pol, L.A. (2012). Identification and optimization of critical process parameters for the production of NOMV vaccine against Neisseria meningitidis. Vaccine 30, 3683–3690.Google Scholar

  • Virgintino, D., Rizzi, M., Errede, M., Strippoli, M., Girolamo, F., Bertossi, M., and Roncali, L. (2012). Plasma membrane-derived microvesicles released from tip endothelial cells during vascular sprouting. Angiogenesis 15, 761–769.PubMedCrossrefGoogle Scholar

  • Wan, S., Zhou, Z., Duan, B., and Morel, L. (2008). Direct B cell stimulation by dendritic cells in a mouse model of lupus. Arthritis Rheum. 58, 1741–1750.CrossrefGoogle Scholar

  • Whitmire, W.M. and Garon, C.F. (1993). Specific and nonspecific responses of murine B cells to membrane blebs of Borrelia burgdorferi. Infect. Immun. 61, 1460–1467.PubMedGoogle Scholar

  • Wiggins, R., Glatfelter, A., Kshirsagar, B., and Beals, T. (1987). Lipid microvesicles and their association with procoagulant activity in urine and glomeruli of rabbits with nephrotoxic nephritis. Lab. Invest. 56, 264–272.PubMedGoogle Scholar

  • Yamada, T., Inoshima, Y., Matsuda, T., and Ishiguro, N. (2012). Comparison of methods for isolating exosomes from bovine milk. J. Vet. Med. Sci. 74, 1523–1525.CrossrefGoogle Scholar

  • Yoo, C.E., Kim, G., Kim, M., Park, D., Kang, H.J., Lee, M., Huh, N. (2012). A direct extraction method for microRNAs from exosomes captured by immunoaffinity beads. Anal. Biochem. 431, 96–98.Google Scholar

  • Yuana, Y., Bertina, R.M., and Osanto, S. (2011). Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost. 105, 396–408.PubMedGoogle Scholar

  • Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S. (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Winston Patrick Kuo, Harvard Catalyst Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, MA 02115, USA; and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA


Received: 2013-02-23

Accepted: 2013-06-13

Published Online: 2013-06-14

Published in Print: 2013-10-01


Citation Information: Biological Chemistry, Volume 394, Issue 10, Pages 1253–1262, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0141.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jae Murphy, Mahnaz Ramezanpour, Amanda Drilling, Eugene Roscioli, Alkis James Psaltis, Peter-John Wormald, and Sarah Vreugde
International Forum of Allergy & Rhinology, 2018
[2]
Chenyu Chu, Shimin Wei, Yuanjing Wang, Yufei Wang, Yi Man, and Yili Qu
Journal of Biomedical Materials Research Part A, 2018
[3]
Lee A. Campbell, Lamarque M. Coke, Christopher T. Richie, Lowella V. Fortuno, Aaron Y. Park, and Brandon K. Harvey
Molecular Therapy, 2018
[4]
Zsófia Onódi, Csilla Pelyhe, Csilla Terézia Nagy, Gábor B. Brenner, Laura Almási, Ágnes Kittel, Mateja Manček-Keber, Péter Ferdinandy, Edit I. Buzás, and Zoltán Giricz
Frontiers in Physiology, 2018, Volume 9
[5]
Yunna Chen, Lei Wang, Dongdong Guo, Chenming Sheng, Haozhi Dai, Xiaoyan Shi, Wenjing Zhang, Qianqian Huang, Can Peng, and Weidong Chen
Journal of Chromatography A, 2018
[6]
Michelle L. Pleet, Heather Branscome, Catherine DeMarino, Daniel O. Pinto, Mohammad Asad Zadeh, Myosotys Rodriguez, Ilker Kudret Sariyer, Nazira El-Hage, and Fatah Kashanchi
Frontiers in Cellular and Infection Microbiology, 2018, Volume 8
[7]
Susmita Sahoo and Douglas W. Losordo
Circulation Research, 2014, Volume 114, Number 2, Page 333
[8]
Frank A.W. Coumans, Alain R. Brisson, Edit I. Buzas, Françoise Dignat-George, Esther E.E. Drees, Samir El-Andaloussi, Costanza Emanueli, Aleksandra Gasecka, An Hendrix, Andrew F. Hill, Romaric Lacroix, Yi Lee, Ton G. van Leeuwen, Nigel Mackman, Imre Mäger, John P. Nolan, Edwin van der Pol, D. Michiel Pegtel, Susmita Sahoo, Pia R.M. Siljander, Guus Sturk, Olivier de Wever, and Rienk Nieuwland
Circulation Research, 2017, Volume 120, Number 10, Page 1632
[10]
Maria Chiriacò, Monica Bianco, Annamaria Nigro, Elisabetta Primiceri, Francesco Ferrara, Alessandro Romano, Angelo Quattrini, Roberto Furlan, Valentina Arima, and Giuseppe Maruccio
Sensors, 2018, Volume 18, Number 10, Page 3175
[11]
Yu-Ru Liu, Carlos Ortiz-Bonilla, and Yi-Fen Lee
International Journal of Molecular Sciences, 2018, Volume 19, Number 9, Page 2822
[12]
Jianyi Zhang, Wuqiang Zhu, Milica Radisic, and Gordana Vunjak-Novakovic
Circulation Research, 2018, Volume 123, Number 2, Page 244
[13]
Hongmei Zheng, Yuting Zhan, Sile Liu, Junmi Lu, Jiadi Luo, Juan Feng, and Songqing Fan
Journal of Experimental & Clinical Cancer Research, 2018, Volume 37, Number 1
[14]
Tomoya Hikita, Mamiko Miyata, Risayo Watanabe, and Chitose Oneyama
Scientific Reports, 2018, Volume 8, Number 1
[15]
Uyen T.T. Than, Dominic Guanzon, James A. Broadbent, David I. Leavesley, Carlos Salomon, and Tony J. Parker
Frontiers in Endocrinology, 2018, Volume 9
[17]
Shang-Chun Guo, Shi-Cong Tao, and Helen Dawn
Journal of Extracellular Vesicles, 2018, Volume 7, Number 1, Page 1508271
[18]
Victor Corassolla Carregari, Livia Rosa-Fernandes, Paulo Baldasso, Sergio Paulo Bydlowski, Sergio Marangoni, Martin R. Larsen, and Giuseppe Palmisano
Scientific Reports, 2018, Volume 8, Number 1
[19]
Fatemeh Momen-Heravi, Stephen J. Getting, and Sterghios Athanasios Moschos
Pharmacology & Therapeutics, 2018
[20]
Leandra Jones, Courtnee’ Bell, Kartz Bibb, Linlin Gu, Mamie Coats, and Qiana Matthews
Biomedicines, 2018, Volume 6, Number 3, Page 79
[21]
Shuang Cai, Bin Luo, Peipei Jiang, Xiaoxi Zhou, Fang Lan, Qiangying Yi, and Yao Wu
Nanoscale, 2018
[22]
Wenshuo Wang, Jing Luo, and Shutao Wang
Advanced Healthcare Materials, 2018, Page 1800484
[23]
Davod Pashoutan Sarvar, Mohammad Hossein Karimi, Aliakbar Movassaghpour, Parvin Akbarzadehlaleh, Sara Aqmasheh, Hamze Timari, and Karim Shamsasenjan
Advanced Pharmaceutical Bulletin, 2018, Volume 8, Number 2, Page 291
[24]
Suchi Gupta, Sonali Rawat, Vivek Arora, Sarat Kumar Kottarath, Amit Kumar Dinda, Pradeep Kumar Vaishnav, Baibaswata Nayak, and Sujata Mohanty
Stem Cell Research & Therapy, 2018, Volume 9, Number 1
[25]
Katarina Trajkovic, Hyunkyung Jeong, and Dimitri Krainc
BIO-PROTOCOL, 2018, Volume 8, Number 1
[26]
Scott W. Messenger, Sang Su Woo, Zhongze Sun, and Thomas F.J. Martin
The Journal of Cell Biology, 2018, Page jcb.201710132
[27]
Lucia Cheung, Sarah Sahloul, Ajymurat Orozaliev, and Yong-Ak Song
Micromachines, 2018, Volume 9, Number 6, Page 306
[28]
Donatella Lucchetti, Andrea Fattorossi, and Alessandro Sgambato
Biotechnology Journal, 2018, Page 1700716
[29]
Tânia Soares Martins, José Catita, Ilka Martins Rosa, Odete A. B. da Cruz e Silva, Ana Gabriela Henriques, and Guo-Chang Fan
PLOS ONE, 2018, Volume 13, Number 6, Page e0198820
[30]
Ruqayyah J. Almizraq, Jelena L. Holovati, and Jason P. Acker
Transfusion Medicine and Hemotherapy, 2018, Volume 45, Number 3, Page 185
[31]
Gorjana Rackov, Noemi Garcia-Romero, Susana Esteban-Rubio, Josefa Carrión-Navarro, Cristobal Belda-Iniesta, and Angel Ayuso-Sacido
Frontiers in Physiology, 2018, Volume 9
[32]
[33]
Collins Cheruiyot, Zemplen Pataki, Bharat Ramratnam, and Ming Li
PROTEOMICS - Clinical Applications, 2018, Page 1700142
[34]
Diego de Souza Gonçalves, Marina da Silva Ferreira, Susie Coutinho Liedke, Kamilla Xavier Gomes, Gabriel Afonso de Oliveira, Pedro Ernesto Lopes Leão, Gabriele Vargas Cesar, Sergio H. Seabra, Juliana Reis Cortines, Arturo Casadevall, Leonardo Nimrichter, Gilberto Barbosa Domont, Magno Rodrigues Junqueira, Jose Mauro Peralta, and Allan J. Guimaraes
Virulence, 2018, Volume 9, Number 1, Page 818
[35]
Raquel Bello-Morales, Beatriz Praena, Carmen de la Nuez, María Teresa Rejas, Milagros Guerra, Marcos Galán-Ganga, Manuel Izquierdo, Víctor Calvo, Claude Krummenacher, José Antonio López-Guerrero, and Richard M. Longnecker
Journal of Virology, 2018, Volume 92, Number 10, Page e00088-18
[36]
Stefania Mondello, Eric P. Thelin, Gerry Shaw, Michel Salzet, Carmela Visalli, Dasa Cizkova, Firas Kobeissy, and Andras Buki
Expert Review of Proteomics, 2018, Page 1
[37]
Matjaž Stenovec, Eva Lasič, Pia Pužar Dominkuš, Saša Trkov Bobnar, Robert Zorec, Metka Lenassi, and Marko Kreft
Molecular Neurobiology, 2018
[38]
Meng Ding, Cheng Wang, Xiaolan Lu, Cuiping Zhang, Zhen Zhou, Xi Chen, Chen-Yu Zhang, Ke Zen, and Chunni Zhang
Analytical and Bioanalytical Chemistry, 2018
[39]
Nicole Osier, Vida Motamedi, Katie Edwards, Ava Puccio, Ramon Diaz-Arrastia, Kimbra Kenney, and Jessica Gill
Molecular Neurobiology, 2018
[40]
Fatemeh Momen-Heravi and Shashi Bala
Journal of Leukocyte Biology, 2018
[41]
Young-Eun Cho, Byoung-Joon Song, Mohammed Akbar, and Moon-Chang Baek
Pharmacology & Therapeutics, 2018
[42]
Steven Marczak, Katherine Richards, Zeinab Ramshani, Elaine Smith, Satyajyoti Senapati, Reginald Hill, David B. Go, and Hsueh-Chia Chang
ELECTROPHORESIS, 2018
[43]
Sarah E Thacker, Manisha Nautiyal, Monicah A Otieno, Paul B Watkins, and Merrie Mosedale
Toxicological Sciences, 2018
[44]
Yoosoo Yang, Yeonsun Hong, Eunji Cho, Gi Beom Kim, and In-San Kim
Journal of Extracellular Vesicles, 2018, Volume 7, Number 1, Page 1440131
[45]
Wenchao Zhang, Xiaofeng Jiang, Jinghui Bao, Yi Wang, Huixing Liu, and Lijun Tang
Frontiers in Immunology, 2018, Volume 9
[46]
Gebeyaw Getnet Mekonnen, Mark Pearson, Alex Loukas, and Javier Sotillo
Expert Review of Vaccines, 2018, Page 1
[47]
Maria Yu. Konoshenko, Evgeniy A. Lekchnov, Alexander V. Vlassov, and Pavel P. Laktionov
BioMed Research International, 2018, Volume 2018, Page 1
[48]
Mahdi Salih, Robert Zietse, and Ewout J. Hoorn
American Journal of Physiology-Renal Physiology, 2014, Volume 306, Number 11, Page F1251
[49]
Sina Halvaei, Shiva Daryani, Zahra Eslami-S, Tannaz Samadi, Narges Jafarbeik-Iravani, Tayebeh Oghabi Bakhshayesh, Keivan Majidzadeh-A, and Rezvan Esmaeili
Molecular Therapy - Nucleic Acids, 2018, Volume 10, Page 131
[50]
Marcel I. Ramirez, Maria G. Amorim, Catarina Gadelha, Ivana Milic, Joshua A. Welsh, Vanessa M. Freitas, Muhammad Nawaz, Naveed Akbar, Yvonne Couch, Laura Makin, Fiona Cooke, Andre L. Vettore, Patricia X. Batista, Roberta Freezor, Julia A. Pezuk, Lívia Rosa-Fernandes, Ana Claudia O. Carreira, Andrew Devitt, Laura Jacobs, Israel T. Silva, Gillian Coakley, Diana N. Nunes, Dave Carter, Giuseppe Palmisano, and Emmanuel Dias-Neto
Nanoscale, 2018
[51]
Victoria Shpacovitch and Roland Hergenröder
Analytica Chimica Acta, 2017
[52]
I. M. Bjørge, S. Y. Kim, J. F. Mano, B. Kalionis, and W. Chrzanowski
Biomaterials Science, 2018
[53]
Jinyun Zhu, Kai Lu, Ning Zhang, Yun Zhao, Qunchao Ma, Jian Shen, Yinuo Lin, Pingping Xiang, Yaoliang Tang, Xinyang Hu, Jinghai Chen, Wei Zhu, Keith A. Webster, Jian’an Wang, and Hong Yu
Artificial Cells, Nanomedicine, and Biotechnology, 2017, Page 1
[54]
Amanda E. Starr, Shelley A. Deeke, Leyuan Li, Xu Zhang, Rachid Daoud, James Ryan, Zhibin Ning, Kai Cheng, Linh V. H. Nguyen, Elias Abou-Samra, Mathieu Lavallée-Adam, and Daniel Figeys
Analytical Chemistry, 2017
[56]
Johan Ankarklev, Daisy Hjelmqvist, and Pierre-Yves Mantel
Journal of Circulating Biomarkers, 2014, Volume 3, Page 3
[57]
Kanchan Vaswani, Yong Qin Koh, Fatema B. Almughlliq, Hassendrini N. Peiris, and Murray D. Mitchell
Reproductive Biology, 2017
[58]
Ziru Niu, Ronald T. K. Pang, Weimin Liu, Qian Li, Ranran Cheng, William S. B. Yeung, and Ramin M. Hakami
PLOS ONE, 2017, Volume 12, Number 10, Page e0186534
[59]
Jie Wang, Wei Li, Zhichao Lu, Leicheng Zhang, Yu Hu, Qiubai Li, Wei Du, Xiaojun Feng, Haibo Jia, and Bi-Feng Liu
Nanoscale, 2017
[60]
Gareth R. Willis, Stella Kourembanas, and S. Alex Mitsialis
Frontiers in Cardiovascular Medicine, 2017, Volume 4
[61]
[62]
Xuan Gao, Carlos Salomon, and Dilys J. Freeman
Frontiers in Endocrinology, 2017, Volume 8
[63]
Stinne R. Greisen, Yan Yan, Aida S. Hansen, Morten T. Venø, Jens R. Nyengaard, Søren K. Moestrup, Malene Hvid, Gordon J. Freeman, Jørgen Kjems, and Bent Deleuran
Frontiers in Immunology, 2017, Volume 8
[64]
Jeffrey D. McBride, Luis Rodriguez-Menocal, Wellington Guzman, Ambar Candanedo, Marta Garcia-Contreras, and Evangelos V. Badiavas
Stem Cells and Development, 2017
[65]
Banishree Saha, Fatemeh Momen-Heravi, Karen Kodys, and Gyongyi Szabo
Journal of Biological Chemistry, 2016, Volume 291, Number 1, Page 149
[66]
Gyongyi Szabo and Fatemeh Momen-Heravi
Nature Reviews Gastroenterology & Hepatology, 2017
[67]
Davide Zabeo, Aleksander Cvjetkovic, Cecilia Lässer, Martin Schorb, Jan Lötvall, and Johanna L Höög
Journal of Extracellular Vesicles, 2017, Volume 6, Number 1, Page 1329476
[68]
Elham Behzadi, Hamideh Mahmoodzadeh Hosseini, and Abbas Ali Imani Fooladi
Microbial Pathogenesis, 2017, Volume 110, Page 1
[69]
Juhi Sharma, Jeffrey M. Hampton, Giancarlo R. Valiente, Takuma Wada, Holly Steigelman, Matthew C. Young, Rachel R. Spurbeck, Alisa D. Blazek, Steffi Bösh, Wael N. Jarjour, and Nicholas A. Young
Frontiers in Immunology, 2017, Volume 8
[70]
Carina Hromada, Severin Mühleder, Johannes Grillari, Heinz Redl, and Wolfgang Holnthoner
Frontiers in Physiology, 2017, Volume 8
[71]
Sahil Inamdar, Rajeshwar Nitiyanandan, and Kaushal Rege
Bioengineering & Translational Medicine, 2017, Volume 2, Number 1, Page 70
[72]
Shimeng Fang, Hongzhu Tian, Xiancheng Li, Dong Jin, Xiaojie Li, Jing Kong, Chun Yang, Xuesong Yang, Yao Lu, Yong Luo, Bingcheng Lin, Weidong Niu, Tingjiao Liu, and Aamir Ahmad
PLOS ONE, 2017, Volume 12, Number 4, Page e0175050
[73]
Irene Vanni, Angela Alama, Francesco Grossi, Maria Giovanna Dal Bello, and Simona Coco
Drug Discovery Today, 2017, Volume 22, Number 6, Page 927
[74]
Ruqayyah J. Almizraq, Jerard Seghatchian, Jelena L. Holovati, and Jason P. Acker
Transfusion and Apheresis Science, 2017, Volume 56, Number 2, Page 254
[75]
Hyejin Kang, Jiyoon Kim, and Jaesung Park
Micro and Nano Systems Letters, 2017, Volume 5, Number 1
[76]
Parissa Ziaei, Jonathan J. Geruntho, Oscar G. Marin-Flores, Clifford E. Berkman, and M. Grant Norton
Journal of Materials Science, 2017, Volume 52, Number 12, Page 6907
[77]
Fang Yang, Xiangzhi Liao, Yuan Tian, and Guiying Li
Biotechnology Journal, 2017, Volume 12, Number 4, Page 1600699
[78]
Aleksander Cvjetkovic, Jan Lötvall, and Cecilia Lässer
Journal of Extracellular Vesicles, 2014, Volume 3, Number 1, Page 23111
[79]
William E. Butler, Nadia Atai, Bob Carter, and Fred Hochberg
Journal of Extracellular Vesicles, 2014, Volume 3, Number 1, Page 24247
[80]
Shima Gholizadeh, Mohamed Shehata Draz, Maryam Zarghooni, Amir Sanati-Nezhad, Saeid Ghavami, Hadi Shafiee, and Mohsen Akbari
Biosensors and Bioelectronics, 2017, Volume 91, Page 588
[81]
Olivia Twu, Patricia J. Johnson, and Laura J. Knoll
PLoS Pathogens, 2014, Volume 10, Number 8, Page e1004289
[82]
Daniel Enderle, Alexandra Spiel, Christine M. Coticchia, Emily Berghoff, Romy Mueller, Martin Schlumpberger, Markus Sprenger-Haussels, Jonathan M. Shaffer, Eric Lader, Johan Skog, Mikkel Noerholm, and Gerrit J. Bouma
PLOS ONE, 2015, Volume 10, Number 8, Page e0136133
[83]
David W. Greening, Rong Xu, Shashi K. Gopal, Alin Rai, and Richard J. Simpson
Expert Review of Proteomics, 2017, Volume 14, Number 1, Page 69
[84]
Giuliana Di Rocco, Silvia Baldari, and Gabriele Toietta
Stem Cells International, 2016, Volume 2016, Page 1
[85]
Dionne Tannetta, Gavin Collett, Manu Vatish, Chris Redman, and Ian Sargent
Placenta, 2017, Volume 52, Page 134
[86]
Monica Reis, Justyna Ogonek, Marsela Qesari, Nuno M. Borges, Lindsay Nicholson, Liane Preußner, Anne Mary Dickinson, Xiao-nong Wang, Eva M. Weissinger, and Anne Richter
Frontiers in Immunology, 2016, Volume 7
[87]
Golam Kibria, Erika K. Ramos, Katelyn E. Lee, Sarah Bedoyan, Simo Huang, Ravand Samaeekia, Jaffre J. Athman, Clifford V. Harding, Jan Lötvall, Lyndsay Harris, Cheryl L. Thompson, and Huiping Liu
Scientific Reports, 2016, Volume 6, Number 1
[88]
Boon Siew Chia, Yen Peng Low, Qing Wang, Pin Li, and Zhiqiang Gao
TrAC Trends in Analytical Chemistry, 2017, Volume 86, Page 93
[89]
Isabel Huang-Doran, Chen-Yu Zhang, and Antonio Vidal-Puig
Trends in Endocrinology & Metabolism, 2017, Volume 28, Number 1, Page 3
[90]
Ruqayyah J. Almizraq, Jerard Seghatchian, and Jason P. Acker
Transfusion and Apheresis Science, 2016, Volume 55, Number 3, Page 281
[91]
Roman Štukelj, Karin Schara, Apolonija Bedina - Zavec, Vid Šuštar, Manca Pajnič, Ljubiša Pađen, Judita Lea Krek, Veronika Kralj-Iglič, Anita Mrvar-Brečko, and Rado Janša
European Journal of Pharmaceutical Sciences, 2017, Volume 98, Page 17
[92]
Dominique Ingato, Jong Uk Lee, Sang Jun Sim, and Young Jik Kwon
Journal of Controlled Release, 2016, Volume 241, Page 174
[93]
Dionne Tannetta, Ieva Masliukaite, Manu Vatish, Christopher Redman, and Ian Sargent
Journal of Reproductive Immunology, 2017, Volume 119, Page 98
[94]
Christopher Tricarico, James Clancy, and Crislyn D'Souza-Schorey
Small GTPases, 2016, Page 1
[95]
Che-Ming Liu, Chia-Ling Hsieh, Chia-Ning Shen, Cheng-Chieh Lin, Katsumi Shigemura, and Shian-Ying Sung
International Journal of Urology, 2016, Volume 23, Number 9, Page 734
[96]
Christian Hacker, Jalal Asadi, Christos Pliotas, Sophie Ferguson, Lee Sherry, Phedra Marius, Javier Tello, David Jackson, James Naismith, and John Milton Lucocq
Scientific Reports, 2016, Volume 6, Number 1
[97]
Sylwia Koniusz, Anna Andrzejewska, Maurizio Muraca, Amit K. Srivastava, Miroslaw Janowski, and Barbara Lukomska
Frontiers in Cellular Neuroscience, 2016, Volume 10
[98]
Hui Ye and Austen Curcuru
Medical & Biological Engineering & Computing, 2016, Volume 54, Number 12, Page 1871
[99]
[100]
Raj Kishore, Venkata Naga Srikanth Garikipati, and Anna Gumpert
Journal of Cardiovascular Translational Research, 2016, Volume 9, Number 3, Page 169
[101]
Hina Kalra, Gregor Drummen, and Suresh Mathivanan
International Journal of Molecular Sciences, 2016, Volume 17, Number 2, Page 170
[102]
Zheng Zhao, Yang Yang, Yong Zeng, and Mei He
Lab Chip, 2016, Volume 16, Number 3, Page 489
[103]
Gabriella Pocsfalvi, Christopher Stanly, Immacolata Fiume, and Károly Vékey
Journal of Chromatography A, 2016, Volume 1439, Page 26
[104]
Rachel E. Crossland, Jean Norden, Louis A. Bibby, Joanna Davis, and Anne M. Dickinson
Journal of Immunological Methods, 2016, Volume 429, Page 39
[105]
Mikhail A. Livshits, Elena Khomyakova, Evgeniy G. Evtushenko, Vassili N. Lazarev, Nikolay A. Kulemin, Svetlana E. Semina, Edward V. Generozov, and Vadim M. Govorun
Scientific Reports, 2015, Volume 5, Number 1
[106]
Juan Salazar, Luis Carlos Olivar, Eduardo Ramos, Mervin Chávez-Castillo, Joselyn Rojas, and Valmore Bermúdez
Cholesterol, 2015, Volume 2015, Page 1
[107]
Brigitte Bisaro, Giorgia Mandili, Alice Poli, Andrea Piolatto, Valentina Papa, Francesco Novelli, Giovanna Cenacchi, Marco Forni, and Cristina Zanini
Molecular and Cellular Therapies, 2015, Volume 3, Number 1
[108]
Johann Mar Gudbergsson, Kasper Bendix Johnsen, Martin Najbjerg Skov, and Meg Duroux
Cytotechnology, 2016, Volume 68, Number 4, Page 579
[109]
Konstantin Yakimchuk
Materials and Methods, 2015, Volume 5
[110]
Fatemeh Momen-Heravi, Banishree Saha, Karen Kodys, Donna Catalano, Abhishek Satishchandran, and Gyongyi Szabo
Journal of Translational Medicine, 2015, Volume 13, Number 1
[111]
Antonella D'Ambrosio, Simona Pontecorvo, Tania Colasanti, Silvia Zamboni, Ada Francia, and Paola Margutti
Autoimmunity Reviews, 2015, Volume 14, Number 12, Page 1097
[112]
Diederick Duijvesz, C. Yin L. Versluis, Christa A.M. van der Fels, Mirella S. Vredenbregt-van den Berg, Janne Leivo, Mari T. Peltola, Chris H. Bangma, Kim S.I. Pettersson, and Guido Jenster
International Journal of Cancer, 2015, Volume 137, Number 12, Page 2869
[113]
A. Liga, A. D. B. Vliegenthart, W. Oosthuyzen, J. W. Dear, and M. Kersaudy-Kerhoas
Lab Chip, 2015, Volume 15, Number 11, Page 2388
[114]
Fatemeh Momen-Heravi, Shashi Bala, Karen Kodys, and Gyongyi Szabo
Scientific Reports, 2015, Volume 5, Number 1
[115]
Heather C. Inglis, Ali Danesh, Avani Shah, Jacques Lacroix, Philip C. Spinella, and Philip J. Norris
Cytometry Part A, 2015, Volume 87, Number 11, Page 1052
[117]
Gabriella Pocsfalvi, Christopher Stanly, Annalisa Vilasi, Immacolata Fiume, Giovambattista Capasso, Lilla Turiák, Edit I Buzas, and Károly Vékey
Mass Spectrometry Reviews, 2016, Volume 35, Number 1, Page 3
[118]
Joel Z. Nordin, Yi Lee, Pieter Vader, Imre Mäger, Henrik J. Johansson, Wolf Heusermann, Oscar P.B. Wiklander, Mattias Hällbrink, Yiqi Seow, Jarred J. Bultema, Jonathan Gilthorpe, Tim Davies, Paul J. Fairchild, Susanne Gabrielsson, Nicole C. Meisner-Kober, Janne Lehtiö, C.I. Edvard Smith, Matthew J.A. Wood, and Samir EL Andaloussi
Nanomedicine: Nanotechnology, Biology and Medicine, 2015, Volume 11, Number 4, Page 879
[119]
Hui Ye and Austen Curcuru
BMC Biophysics, 2015, Volume 8, Number 1, Page 2
[121]
Luca Musante, Dorota Tataruch, Dongfeng Gu, Alberto Benito-Martin, Giulio Calzaferri, Sinead Aherne, and Harry Holthofer
Scientific Reports, 2015, Volume 4, Number 1
[123]
Hongqi Xin, Yi Li, and Michael Chopp
Frontiers in Cellular Neuroscience, 2014, Volume 8
[124]
Marcella Franquesa, Martin J. Hoogduijn, Elia Ripoll, Franka Luk, Mahdi Salih, Michiel G. H. Betjes, Juan Torras, Carla C. Baan, Josep M. Grinyó, and Ana Maria Merino
Frontiers in Immunology, 2014, Volume 5
[125]
Haitao Gu, Anne-Marie C. Overstreet, and Yongguang Yang
Nano LIFE, 2014, Volume 04, Number 04, Page 1441017
[126]
Ivana Kawikova and Philip W. Askenase
Brain Research, 2015, Volume 1617, Page 63
[127]
Kirsten Lindner, Joerg Haier, Zhe Wang, David I. Watson, Damian J. Hussey, and Richard Hummel
Clinical Science, 2015, Volume 128, Number 1, Page 1
[128]
Violaine K. Harris and Saud A. Sadiq
Molecular Diagnosis & Therapy, 2014, Volume 18, Number 6, Page 605
[129]
Tek N. Lamichhane, Sonja Sokic, John S. Schardt, Rahul S. Raiker, Jennifer W. Lin, and Steven M. Jay
Tissue Engineering Part B: Reviews, 2015, Volume 21, Number 1, Page 45
[130]
Romain Wyss, Luigino Grasso, Camille Wolf, Wolfgang Grosse, Davide Demurtas, and Horst Vogel
Analytical Chemistry, 2014, Volume 86, Number 15, Page 7229
[131]
Anne Louise Schacht Revenfeld, Rikke Bæk, Morten Hjuler Nielsen, Allan Stensballe, Kim Varming, and Malene Jørgensen
Clinical Therapeutics, 2014, Volume 36, Number 6, Page 830
[132]
Fatemeh Momen-Heravi, Shashi Bala, Terence Bukong, and Gyongyi Szabo
Nanomedicine: Nanotechnology, Biology and Medicine, 2014, Volume 10, Number 7, Page 1517
[133]
Shidong Jia, Davide Zocco, Michael L Samuels, Michael F Chou, Roger Chammas, Johan Skog, Natasa Zarovni, Fatemeh Momen-Heravi, and Winston Patrick Kuo
Expert Review of Molecular Diagnostics, 2014, Volume 14, Number 3, Page 307
[134]
Crislyn D'Souza-Schorey and Dolores Di Vizio
Expert Review of Proteomics, 2014, Volume 11, Number 3, Page 251
[135]
Xi Yang, Zuquan Weng, Donna L. Mendrick, and Qiang Shi
Toxicology Letters, 2014, Volume 225, Number 3, Page 401

Comments (0)

Please log in or register to comment.
Log in