Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 22, 2013

NSR from Streptococcus agalactiae confers resistance against nisin and is encoded by a conserved nsr operon

  • Sakshi Khosa , Zainab AlKhatib and Sander H.J. Smits EMAIL logo
From the journal Biological Chemistry

Abstract

Nisin is a lantibiotic produced by Lactococcus lactis (L. lactis), which is active against many Gram-positive bacteria. However, in various pathogenic and nonpathogenic bacteria, the presence of a nisin resistance protein (NSR) confers resistance against nisin. Here, we show that NSR from Streptococcus agalactiae (SaNSR) confers 20-fold resistance when expressed in L. lactis. We also show that SaNSR is encoded by an operon structure comprising of a lipoprotein and an ATP-binding cassette transporter as well as a two-component system that is putatively involved in expression and regulation. This organization of the operon is conserved in several (non)pathogenic strains that do not produce nisin themselves.


Corresponding author: Sander H.J. Smits, Institute of Biochemistry, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany, e-mail:

The authors would like to thank André Abts and Ulrich Schulte for their helpful suggestions and valuable comments and all the laboratory members for their support. We sincerely thank Dr. Diana Kleinschrodt and Iris Fey, at the Protein Production Facility, Heinrich-Heine-University Düsseldorf, for cloning the plasmids. We gratefully acknowledge the support (and training) from the International NRW Research School BioStruct and the grants from the Ministry of Innovation, Science and Research of the State North Rhine-Westphalia, the Heinrich-Heine-University of Düsseldorf, the Entrepreneur Foundation at the Heinrich-Heine-University of Düsseldorf. We are highly indebted to the scholarships provided by CLIB Graduate Cluster Industrial Biotechnology to Z.A. and Heinrich Heine International Graduate School of Protein Science and Technology (iGRASPseed) to S.K.

References

Abts, A., Mavaro, A., Stindt, J., Bakkes, P.J., Metzger, S., Driessen, A.J., Smits, S.H., and Schmitt, L. (2011). Easy and rapid purification of highly active nisin. Int. J. Pept. 2011, 175145.10.1155/2011/175145Search in Google Scholar

Alkhatib, Z., Abts, A., Mavaro, A., Schmitt, L., and Smits, S.H. (2012). Lantibiotics: how do producers become self-protected? J. Biotechnol. 159, 145–154.10.1016/j.jbiotec.2012.01.032Search in Google Scholar

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.10.1016/S0022-2836(05)80360-2Search in Google Scholar

Bernsel, A., Viklund, H., Hennerdal, A., and Elofsson, A. (2009). TOPCONS: consensus prediction of membrane protein topology. Nucl. Acids Res. 37, W465–W468.10.1093/nar/gkp363Search in Google Scholar

Bierbaum, G., Szekat, C., Josten, M., Heidrich, C., Kempter, C., Jung, G., and Sahl, H.-G. (1996). Engineering of a novel thioether bridge and role of modified residues in the lantibiotic Pep5. Appl. Environ. Microbiol. 62, 385–392.10.1128/aem.62.2.385-392.1996Search in Google Scholar

Carlson, S. and Bauer, H. (1957). A study of problems associated with resistance to nisin. Arch. Hyg. Bakteriol. 141, 445–460.Search in Google Scholar

Chatterjee, C., Miller, L.M., Leung, Y.L., Xie, L., Yi, M., Kelleher, N.L., and van der Donk, W.A. (2005a). Lacticin 481 synthetase phosphorylates its substrate during lantibiotic production. J. Am. Chem. Soc. 127, 15332–15333.10.1021/ja0543043Search in Google Scholar

Chatterjee, C., Paul, M., Xie, L., and van der Donk, W.A. (2005b). Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105, 633–684.10.1021/cr030105vSearch in Google Scholar

Davidson, A.L., Dassa, E., Orelle, C., and Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364.10.1128/MMBR.00031-07Search in Google Scholar

Froseth, B.R. and McKay, L.L. (1991). Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3. Appl. Environ. Microbiol. 57, 804–811.10.1128/aem.57.3.804-811.1991Search in Google Scholar

Harris, L.J., Fleming, H.P., and Klaenhammer, T.R. (1992). Developments in nisin research. Food Res. Int. 25, 57–66.10.1016/0963-9969(92)90026-2Search in Google Scholar

Hasper, H.E., Kramer, N.E., Smith, J.L., Hillman, J., Zachariah, C., Kuipers, O.P., De Kruijff, B., and Breukink, E. (2006). An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313, 1636–1637.10.1126/science.1129818Search in Google Scholar

Higgins, C.F. and Linton, K.J. (2004). The ATP switch model for ABC transporters. Nat. Struct. Mol. Biol. 11, 918–926.10.1038/nsmb836Search in Google Scholar

Hirsch, A. (1950). The assay of the antibiotic nisin. J. Gen. Microbiol. 4, 70–83.10.1099/00221287-4-1-70Search in Google Scholar

Holland, I.B., Cole, S.P., Kuchler, K., and Higgins, C.F. (2003). ABC Proteins: From Bacteria to Man (Academic Press) Access Online via Elsevier.Search in Google Scholar

Ingram, L.C. (1969). Synthesis of the antibiotic nisin: formation of lanthionine and beta-methyl-lanthionine. Biochim. Biophys. Acta 184, 216–219.10.1016/0304-4165(69)90121-4Search in Google Scholar

Kawada-Matsuo, M., Oogai, Y., Zendo, T., Nagao, J., Shibata, Y., Yamashita, Y., Ogura, Y., Hayashi, T., Sonomoto, K., and Komatsuzawa, H. (2013). Involvement of the novel two-component NsrRS and LcrRS systems in distinct resistance pathways against nisin A and nukacin ISK-1 in Streptococcus mutans. Appl. Environ. Microbiol. 79, 4751–4755.10.1128/AEM.00780-13Search in Google Scholar PubMed PubMed Central

Keiler, K.C., and Sauer, R.T. (1995). Identification of active site residues of the Tsp protease. J. Biol. Chem. 270, 28864–28868.10.1074/jbc.270.48.28864Search in Google Scholar PubMed

Kleerebezem, M. (2004). Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25, 1405–1414.10.1016/j.peptides.2003.10.021Search in Google Scholar PubMed

Kuipers, O.P., Beerthuyzen, M.M., de Ruyter, P.G., Luesink, E.J., and de Vos, W.M. (1995). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270, 27299–27304.10.1074/jbc.270.45.27299Search in Google Scholar PubMed

Magrane, M. (2011). UniProt Knowledgebase: a hub of integrated protein data. Database: (Oxford) 2011, bar009.Search in Google Scholar

Matos, R., Pinto, V.V., Ruivo, M., and Lopes, M.D.F.S. (2009). Study on the dissemination of the bcrABDR cluster in Enterococcus spp. reveals that the BcrAB transporter is sufficient to confer high-level bacitracin resistance. Int. J. Antimicrob. Agents 34, 142–147.10.1016/j.ijantimicag.2009.02.008Search in Google Scholar PubMed

Nishie, M., Sasaki, M., Nagao, J., Zendo, T., Nakayama, J., and Sonomoto, K. (2011). Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain. J. Biol. Chem. 286, 11163–11169.10.1074/jbc.M110.212704Search in Google Scholar PubMed PubMed Central

Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L., and Chen, J. (2007). Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521.10.1038/nature06264Search in Google Scholar

Oman, T.J. and van der Donk, W.A. (2009). Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem. Biol. 4, 865–874.10.1021/cb900194xSearch in Google Scholar

Ra, R., Beerthuyzen, M.M., de Vos, W.M., Saris, P.E., and Kuipers, O.P. (1999). Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity. Microbiology 145, 1227–1233.10.1099/13500872-145-5-1227Search in Google Scholar

Rawlings, N.D., Barrett, A.J., and Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucl. Acid Res. 40, D343–D350.10.1093/nar/gkr987Search in Google Scholar

Reisinger, P., Seidel, H., Tschesche, H., and Hammes, W.P. (1980). The effect of nisin on murein synthesis. Arch. Microbiol. 127, 187–193.10.1007/BF00427192Search in Google Scholar

Rogers, L. (1928). The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol. 16, 321–325.10.1128/jb.16.5.321-325.1928Search in Google Scholar

Sahl, H.-G. and Bierbaum, G. (1998). Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Annu. Rev. Microbiol. 52, 41–79.10.1146/annurev.micro.52.1.41Search in Google Scholar

Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., and Federhen, S. (2010). Database resources of the National Center for Biotechnology Information. Nucl. Acids Res. 38, D5–D16.10.1093/nar/gkp967Search in Google Scholar

Schmitt, L. and Tampé, R. (2002). Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 12, 754–760.10.1016/S0959-440X(02)00399-8Search in Google Scholar

Siegers, K. and Entian, K. (1995). Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl. Environ. Microbiol. 61, 1082–1089.10.1128/aem.61.3.1082-1089.1995Search in Google Scholar PubMed PubMed Central

Silber, K.R., Keiler, K.C., and Sauer, R.T. (1992). Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc. Natl. Acad. Sci. USA 89, 295–299.10.1073/pnas.89.1.295Search in Google Scholar PubMed PubMed Central

Söding, J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960.10.1093/bioinformatics/bti125Search in Google Scholar PubMed

Stein, T., Heinzmann, S., Solovieva, I., and Entian, K.D. (2003). Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J. Biol. Chem. 278, 89–94.10.1074/jbc.M207237200Search in Google Scholar PubMed

Stein, T., Heinzmann, S., Düsterhus, S., Borchert, S., and Entian, K.-D. (2005). Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J. Bacteriol. 187, 822–828.10.1128/JB.187.3.822-828.2005Search in Google Scholar PubMed PubMed Central

Sun, Z., Zhong, J., Liang, X., Liu, J., Chen, X., and Huan, L. (2009). Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob. Agents Chemother. 53, 1964–1973.10.1128/AAC.01382-08Search in Google Scholar PubMed PubMed Central

Van Der Does, C. and Tampe, R. (2004). How do ABC transporters drive transport? Biol. Chem. 385, 927–933.Search in Google Scholar

van der Heide, T. and Poolman, B. (2002). ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep. 3, 938–943.10.1093/embo-reports/kvf201Search in Google Scholar PubMed PubMed Central

van Heusden, H.E., de Kruijff, B., and Breukink, E. (2002). Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. Biochemistry 41, 12171–12178.10.1021/bi026090xSearch in Google Scholar PubMed

Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O.P., Bierbaum, G., de Kruijff, B., and Sahl, H.-G. (2001). Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276, 1772–1779.10.1074/jbc.M006770200Search in Google Scholar PubMed

Willey, J.M. and van der Donk, W.A. (2007). Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 61, 477–501.10.1146/annurev.micro.61.080706.093501Search in Google Scholar PubMed

Zaitseva, J., Oswald, C., Jumpertz, T., Jenewein, S., Wiedenmann, A., Holland, I.B., and Schmitt, L. (2006). A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J. 25, 3432–3443.10.1038/sj.emboj.7601208Search in Google Scholar PubMed PubMed Central

Received: 2013-5-3
Accepted: 2013-7-17
Published Online: 2013-07-22
Published in Print: 2013-11-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0167/html
Scroll to top button