Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 394, Issue 11


Revisiting Disrupted-in-Schizophrenia 1 as a scaffold protein

Antony S.K. Yerabham
  • Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver H. Weiergräber
  • Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicholas J. Bradshaw
  • Corresponding author
  • Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carsten Korth
  • Corresponding author
  • Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-05 | DOI: https://doi.org/10.1515/hsz-2013-0178


Disrupted-in-Schizophrenia 1 (DISC1) is a widely-accepted genetic risk factor for schizophrenia and many other major mental illnesses. Traditionally DISC1 has been referred to as a ‘scaffold protein’ because of its ability to bind to a wide array of other proteins, including those of importance for neurodevelopment. Here, we review the characteristic properties shared between established scaffold proteins and DISC1. We find DISC1 to have many, but not all, of the characteristics of a scaffold protein, as it affects a considerable number of different, but related, signaling pathways, in most cases through inhibition of key enzymes. Using threading algorithms, the C-terminal portion of DISC1 could be mapped to extended helical structures, yet it may not closely resemble any of the known tertiary folds. While not completely fitting the classification of a classical scaffold protein, DISC1 does appear to be a tightly regulated and multi-faceted inhibitor of a wide range of enzymes from interrelated signaling cascades (Diverse Inhibitor of Signaling Cascades), which together contribute to neurodevelopment and synaptic homeostasis. Consequently, disruption of this complex regulation would be expected to lead to the range of major mental illnesses in which the DISC1 gene has been implicated.

Keywords: DISC1; mental illness; protein-protein interactions; signaling pathways; structure; threading models


  • Bader, V., Tomppo, L., Trossbach, S.V., Bradshaw, N.J., Prikulis, I., Leliveld, S.R., Lin, C.-Y., Ishizuka, K., Sawa, A., Ramos, A., et al. (2012). Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum. Mol. Genet. 21, 4406–4418.Google Scholar

  • Bashor, C.J., Helman, N.C., Yan, S., and Lim, W.A. (2008). Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543.Google Scholar

  • Blackwood, D.H.R., Fordyce, A., Walker, M.T., St. Clair, D.M., Porteous, D.J., and Muir, W.J. (2001). Schizophrenia and affective disorders – cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: Clinical and P300 findings in a family. Am. J. Hum. Genet. 69, 428–433.Google Scholar

  • Bradshaw, N.J., Christie, S., Soares, D.C., Carlyle, B.C., Porteous, D.J., and Millar, J.K. (2009). NDE1 and NDEL1: Multimerisation, alternate splicing and DISC1 interaction. Neurosci. Lett. 449, 228–233.Google Scholar

  • Bradshaw, N.J., Ogawa, F., Antolin-Fontes, B., Chubb, J.E., Carlyle, B.C., Christie, S., Claessens, A., Porteous, D.J., and Millar, J.K. (2008). DISC1, PDE4B, and NDE1 at the centrosome and synapse. Biochem. Biophys. Res. Commun. 377, 1091–1096.Google Scholar

  • Bradshaw, N.J. and Porteous, D.J. (2012). DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 62, 1230–1241.Google Scholar

  • Bradshaw, N.J., Soares, D.C., Carlyle, B.C., Ogawa, F., Davidson-Smith, H., Christie, S., Mackie, S., Thomson, P.A., Porteous, D.J., and Millar, J.K. (2011). PKA phosphorylation of NDE1 is DISC1/PDE4-dependant and modulates its interaction with LIS1 and NDEL1. J. Neurosci. 31, 9043–9054.Google Scholar

  • Brandon, N.J., Handford, E.J., Schurov, I., Rain, J.-C., Pelling, M., Duran-Jimeriz, B., Camargo, L.M., Oliver, K.R., Beher, D., Shearman, M.S., et al. (2004). Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol. Cell Neurosci. 25, 42–55.Google Scholar

  • Brandon, N.J., Millar, J.K., Korth, C., Sive, H., Singh, K.K., and Sawa, A. (2009). Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci. 29, 12768–12775.Google Scholar

  • Brandon, N.J. and Sawa, A. (2011). Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat. Rev. Neurosci. 12, 707–722.Google Scholar

  • Burdick, K.E., Kamiya, A., Hodgkinson, C.A., Lencz, T., DeRosse, P., Ishizuka, K., Elashvili, S., Arai, H., Goldman, D., Sawa, A., et al. (2008). Elucidating the relationship between DISC1, NDEL1, and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum. Mol. Genet. 17, 2462–2473.Google Scholar

  • Callicott, J.H., Straub, R.E., Pezawas, L., Egan, M.F., Mattay, V.S., Hariri, A.R., Verchinski, B.A., Meyer-Lindenberg, A., Balkissoon, R., Kolachana, B., et al. (2005). Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc. Natl. Acad. Sci. USA 102, 8627–8632.Google Scholar

  • Camargo, L.M., Collura, V., Rain, J.-C., Mizuguchi, K., Hermjakob, H., Kerrien, S., Bonnert, T.P., Whiting, P.J., and Brandon, N.J. (2007). Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol. Psychiatry 12, 74–86.Google Scholar

  • Carlyle, B.C., Mackie, S., Christie, S., Millar, J.K., and Porteous, D.J. (2011). Co-ordinated action of DISC1, PDE4B and GSK3b in modulation of cAMP signalling. Mol. Psychiatry 16, 693–694.Google Scholar

  • Chen, S.Y., Huang, P.H., and Cheng, H.J. (2011). Disrupted-in-Schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc. Natl. Acad. Sci. USA 108, 5861–5866.Google Scholar

  • Choi, K.Y., Satterberg, B., Lyons, D.M., and Elion, E.A. (1994). Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499–512.Google Scholar

  • Chubb, J.E., Bradshaw, N.J., Soares, D.C., Porteous, D.J., and Millar, J.K. (2008). The DISC locus in psychiatric illness. Mol. Psychiatry 13, 36–64.CrossrefPubMedGoogle Scholar

  • Diviani, D., and Scott, J.D. (2001). AKAP signaling complexes at the cytoskeleton. J. Cell Sci. 114, 1431–1437.Google Scholar

  • Djinovic-Carugo, K., Gautel, M., Ylanne, J., and Young, P. (2002). The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 513, 119–123.CrossrefGoogle Scholar

  • Duan, X., Chang, J.H., Ge, S., Faulkner, R.L., Kim, J.Y., Kitabatake, Y., Liu, X.-b., Yang, C.-H., Jordan, J.D., Ma, D.K., et al. (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130, 1146–1158.Google Scholar

  • Dunbrack, R.L., Jr. (2006). Sequence comparison and protein structure prediction. Curr. Opin. Struct. Biol. 16, 374–384.PubMedCrossrefGoogle Scholar

  • Elefteriou, F., Ahn, J.D., Takeda, S., Starbuck, M., Yang, X., Liu, X., Kondo, H., Richards, W.G., Bannon, T.W., Noda, M., et al. (2005). Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520.Google Scholar

  • Enomoto, A., Asai, N., Namba, T., Wang, Y., Kato, T., Tanaka, M., Tatsumi, H., Taya, S., Tsuboi, D., Kuroda, K., et al. (2009). Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron 63, 774–787.Google Scholar

  • Feliciello, A., Gottesman, M.E., and Avvedimento, E.V. (2001). The biological functions of A-kinase anchor proteins. J. Mol. Biol. 308, 99–114.Google Scholar

  • Gadelha, A., Machado, M.F.M., Yonamine, C.M., Sato, J.R., Juliano, M.A., Oliveira, V., Bressan, R.A., and Hayashi, M.A.F. (2013). Plasma Ndel1 enzyme activity is reduced in patients with schizophrenia – A potential biomarker? J. Psychiatr. Res. 47, 657–663.CrossrefGoogle Scholar

  • Good, M.C., Zalatan, J.G., and Lim, W.A. (2011). Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686.Google Scholar

  • Hasson, M.S., Blinder, D., Thorner, J., and Jenness, D.D. (1994). Mutational activation of the STE5 gene product bypasses the requirement for G protein β and γ subunits in the yeast pheromone response pathway. Mol. Cell Biol. 14, 1054–1065.Google Scholar

  • Hayashi-Takagi, A., Takaki, M., Graziane, N., Seshadri, S., Murdoch, H., Dunlop, A.J., Makino, Y., Seshadri, A.J., Ishizuka, K., Srivastava, D.P., et al. (2010). Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat. Neurosci. 13, 327–332.Google Scholar

  • Hayashi, M.A.F., Portaro, F.C.V., Bastos, M.F., Guerreiro, J.R., Oliveira, V., Gorrao, S.S., Tambourgi, D.V., Sant’Anna, O.A., Whiting, P.J., Camargo, L.M., et al. (2005). Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1. Proc. Natl. Acad. Sci. USA 102, 3828–3833.Google Scholar

  • Huang, G.N., Huso, D.L., Bouyain, S., Tu, J., McCorkell, K.A., May, M.J., Zhu, Y., Lutz, M., Collins, S., Dehoff, M., et al. (2008). NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science 319, 476–481.Google Scholar

  • Hurme, R., Berndt, K.D., Namork, E., and Rhen, M. (1996). Additions and Corrections to DNA binding exerted by a bacterial gene regulator with an extensive coiled-coil domain. J. Biol. Chem. 271, 17547.Google Scholar

  • Ishizuka, K., Kamiya, A., Oh, E.C., Kanki, H., Seshadri, S., Robinson, J.F., Murdoch, H., Dunlop, A.J., Kubo, K.-i., Furukori, K., et al. (2011). DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature 473, 92–96.Google Scholar

  • Jefferys, B.R., Kelley, L.A., and Sternberg, M.J.E. (2010). Protein folding requires crowd control in a simulated cell. J. Mol. Biol. 397, 1329–1338.Google Scholar

  • Kamiya, A., Kubo, K.-i., Tomoda, T., Takaki, M., Youn, R., Ozeki, Y., Sawamura, N., Park, U., Kudo, C., Okawa, M., et al. (2005). A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat. Cell Biol. 7, 1167–1178.CrossrefGoogle Scholar

  • Kamiya, A., Tan, P.L., Kubo, K., Engelhard, C., Ishizuka, K., Kubo, A., Tsukita, S., Pulver, A.E., Nakajima, K., Cascella, N.G., et al. (2008). Recruitment of PCM1 to the centrosome by the cooperative action of DISC1 and BBS4: a candidate for psychiatric illnesses. Arch. Gen. Psychiatry 65, 996–1006.Google Scholar

  • Kamiya, A., Tomoda, T., Chang, J., Takaki, M., Zhan, C., Morita, M., Cascio, M.B., Elashvili, S., Koizumi, H., Takanezawa, Y., et al. (2006). DISC1-NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1. Hum. Mol. Genet. 15, 3313–3323.Google Scholar

  • Kang, E., Burdick, Katherine E., Kim, Ju Y., Duan, X., Guo, Junjie U., Sailor, Kurt A., Jung, D.-E., Ganesan, S., Choi, S., Pradhan, D., et al. (2011). Interaction between FEZ1 and DISC1 in regulation of neuronal development and risk for schizophrenia. Neuron 72, 559–571.Google Scholar

  • Karplus, K., Barrett, C., and Hughey, R. (1998). Hidden Markov models for detecting remote protein homologies. Bioinformatics 14, 846–856.CrossrefPubMedGoogle Scholar

  • Kelley, L.A. and Sternberg, M.J. (2009). Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371.CrossrefGoogle Scholar

  • Kim, J.Y., Duan, X., Liu, C.Y., Jang, M.H., Guo, J.U., Pow-anpongkul, N., Kang, E., Song, H., and Ming, G.L. (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63, 761–773.Google Scholar

  • Kim, J.Y., Liu, C.Y., Zhang, F., Duan, X., Wen, Z., Song, J., Feighery, E., Lu, B., Rujescu, D., Clair, D.S., et al. (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064.Google Scholar

  • Korth, C. (2012). Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion 6, 1–8.Google Scholar

  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., and Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77, 114–122.Google Scholar

  • Kuroda, K., Yamada, S., Tanaka, M., Iizuka, M., Yano, H., Mori, D., Tsuboi, D., Nishioka, T., Namba, T., Iizuka, Y., et al. (2011). Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum. Mol. Genet. 20, 4666–4683.Google Scholar

  • Leliveld, S.R., Bader, V., Hendriks, P., Prikulis, I., Sajnani, G., Requena, J.R., and Korth, C. (2008). Insolubility of Disrupted-in-Schizophrenia 1 disrupts oligomer-dependent interactions with Nuclear Distribution Element 1 and is associated with sporadic mental disease. J. Neurosci. 28, 3839–3845.Google Scholar

  • Li, Y., Chen, L., Kass, R.S., and Dessauer, C.W. (2012). The A-kinase anchoring protein yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J. Biol. Chem. 287, 29815–29824.Google Scholar

  • Lipina, T.V., Wang, M., Liu, F., and Roder, J.C. (2012). Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice. Neuropharmacology 62, 1252–1262.Google Scholar

  • Liu, J., Taylor, D.W., and Taylor, K.A. (2004). A 3-D reconstruction of smooth muscle α-actinin by CryoEM reveals two different conformations at the actin-binding region. J. Mol. Biol. 338, 115–125.Google Scholar

  • Locasale, J.W., Shaw, A.S., and Chakraborty, A.K. (2007). Scaffold proteins confer diverse regulatory properties to protein kinase cascades. Proc. Natl. Acad. Sci. USA 104, 13307–13312.CrossrefGoogle Scholar

  • Ma, T.M., Abazyan, S., Abazyan, B., Nomura, J., Yang, C., Seshadri, S., Sawa, A., Snyder, S.H., and Pletnikov, M.V. (2013). Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol. Psychiatry 18, 557–567.CrossrefGoogle Scholar

  • Mao, Y., Ge, X., Frank, C.L., Madison, J.M., Koehler, A.N., Doud, M.K., Tassa, C., Berry, E.M., Soda, T., Singh, K.K., et al. (2009). Disrupted in Schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3b/b-Catenin signaling. Cell 136, 1017–1031.Google Scholar

  • Millar, J.K., Christie, S., and Porteous, D.J. (2003). Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem. Biophys. Res. Commun. 311, 1019–1025.Google Scholar

  • Millar, J.K., Pickard, B.S., Mackie, S., James, R., Christie, S., Buchanan, S.R., Malloy, M.P., Chubb, J.E., Huston, E., Baille, G.S., et al. (2005). DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signalling. Science 310, 1187–1191.Google Scholar

  • Millar, J.K., Wilson-Annan, J.C., Anderson, S., Christie, S., Taylor, M.S., Semple, C.A.M., Devon, R.S., St Clair, D.M., Muir, W.J., Blackwood, D.H.R., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1425.CrossrefGoogle Scholar

  • Miyoshi, K., Honda, A., Baba, K., Taniguchi, M., Oono, K., Fujita, T., Kuroda, S., Katayama, T., and Tohyama, M. (2003). Disrupted-in-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol. Psychiatry 8, 685–694.Google Scholar

  • Morris, J.A., Kandpal, G., Ma, L., and Austin, C.P. (2003). DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum. Mol. Genet. 12, 1591–1608.Google Scholar

  • Muller, J., Ory, S., Copeland, T., Piwnica-Worms, H., and Morrison, D.K. (2001). C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol. Cell 8, 983–993.Google Scholar

  • Murdoch, H., Mackie, S., Collins, D.M., Hill, E.V., Bolger, G.B., Klussmann, E., Porteous, D.J., Millar, J.K., and Houslay, M.D. (2007). Isoform-selective susceptibility of DISC1/Phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J. Neurosci. 27, 9513–9524.Google Scholar

  • Nakata, K., Lipska, B.K., Hyde, T.M., Ye, T., Newburn, E.N., Morita, Y., Vakkalanka, R., Barenboim, M., Sei, Y., Weinberger, D.R., et al. (2009). DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc. Natl. Acad. Sci. USA 106, 15873–15878.Google Scholar

  • Narayanan, S., Arthanari, H., Wolfe, M.S., and Wagner, G. (2011). Molecular characterization of Disrupted in Schizophrenia-1 risk variant S704C reveals the formation of altered oligomeric assembly. J. Biol. Chem. 286, 44266–44276.Google Scholar

  • Newburn, E.N., Hyde, T.M., Ye, T., Morita, Y., Weinberger, D.R., Kleinman, J.E., and Lipska, B.K. (2011). Interactions of human truncated DISC1 proteins: implications for schizophrenia. Transl. Psychiatry 1, e30.CrossrefGoogle Scholar

  • Niwa, M., Kamiya, A., Murai, R., Kubo, K.-i., Gruber, A.J., Tomita, K., Lu, L., Tomisato, S., Jaaro-Peled, H., Seshadri, S., et al. (2010). Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65, 480–489.CrossrefGoogle Scholar

  • Ottis, P., Bader, V., Trossbach, S.V., Kretzschmar, H., Michel, M., Leliveld, S.R., and Korth, C. (2011). Convergence of two independent mental disease genes on the protein level: Recruitment of dysbindin to cell-invasive DISC1 aggresomes. Biol. Psychiatry 70, 604–610.CrossrefGoogle Scholar

  • Ozeki, Y., Tomoda, T., Kleiderlein, J., Kamiya, A., Bord, L., Fujii, K., Okawa, M., Yamada, N., Hatten, M.E., Snyder, S.H., et al. (2003). Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc. Natl. Acad. Sci. USA 100, 289–294.Google Scholar

  • Park, Y.-U., Jeong, J., Lee, H., Mun, J.Y., Kim, J.-H., Lee, J.S., Nguyen, M.D., Han, S.S., Suh, P.-G., and Park, S.K. (2010). Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc. Natl. Acad. Sci. USA 107, 17785–17790.Google Scholar

  • Piggott, L.A., Bauman, A.L., Scott, J.D., and Dessauer, C.W. (2008). The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proc. Natl. Acad. Sci. USA 105, 13835–13840.CrossrefGoogle Scholar

  • Pletnikov, M.V., Xu, Y., Ovanesov, M.V., Kamiya, A., Sawa, A., and Ross, C.A. (2007). PC12 cell model of inducible expression of mutant DISC1: new evidence for a dominant-negative mechanism of abnormal neuronal differentiation. Neurosci. Res. 58, 234–244.Google Scholar

  • Popescu, D.C., Ham, A.J., and Shieh, B.H. (2006). Scaffolding protein INAD regulates deactivation of vision by promoting phosphorylation of transient receptor potential by eye protein kinase C in Drosophila. J. Neurosci. 26, 8570–8577.CrossrefGoogle Scholar

  • Rose, A. and Meier, I. (2004). Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins. Cell Mol. Life Sci. 61, 1996–2009.PubMedGoogle Scholar

  • Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738.CrossrefGoogle Scholar

  • Šali, A. and Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779–815.Google Scholar

  • Sanchez-Pulido, L. and Ponting, C.P. (2011). Structure and evolutionary history of DISC1. Hum. Mol. Genet. 20, R175–R181.Google Scholar

  • Sawamura, N., Ando, T., Maruyama, Y., Fujimuro, M., Mochizuki, H., Honjo, K., Shimoda, M., Toda, H., Sawamura-Yamamoto, T., Makuch, L.A., et al. (2008). Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol. Psychiatry 13, 1138–1148.Google Scholar

  • Shanks, R.A., Steadman, B.T., Schmidt, P.H., and Goldenring, J.R. (2002). AKAP350 at the Golgi apparatus. I. Identification of a distinct Golgi apparatus targeting motif in AKAP350. J. Biol. Chem. 277, 40967–40972.Google Scholar

  • Shaw, A.S. and Filbert, E.L. (2009). Scaffold proteins and immune-cell signalling. Nat. Rev. Immunol. 9, 47–56.CrossrefPubMedGoogle Scholar

  • Shen, S., Lang, B., Nakamoto, C., Zhang, F., Pu, J., Kuan, S.-L., Chatzi, C., He, S., Mackie, I., Brandon, N.J., et al. (2008). Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J. Neurosci. 28, 10893–10904.CrossrefGoogle Scholar

  • Shinoda, T., Taya, S., Tsuboi, D., Hikita, T., Matsuzawa, R., Kuroda, S., Iwamatsu, A., and Kaibuchi, K. (2007). DISC1 regulates Neurotrophin-induced axon elongation via interaction with Grb2. J. Neurosci. 27, 4–14.Google Scholar

  • Singh, K.K., Ge, X., Mao, Y., Drane, L., Meletis, K., Samuels, B.A., and Tsai, L.-H. (2010). Dixdc1 is a critical regulator of DISC1 and embryonic cortical development. Neuron 67, 33–48.Google Scholar

  • Soares, D.C., Carlyle, B.C., Bradshaw, N.J., and Porteous, D.J. (2011). DISC1: structure, function, and therapeutic potential for major mental illness. ACS Chem. Neurosci. 2 609–632.Google Scholar

  • Soda, T., Frank, C., Ishizuka, K., Baccarella, A., Park, Y.-U., Flood, Z., Park, S.K., Sawa, A., and Tsai, L.-H. (2013). DISC1-ATF4 transcriptional repression complex: dual regulation of the cAMP-PDE4 cascade by DISC1. Mol Psychiatry doi:10.1038/mp.2013.38.CrossrefGoogle Scholar

  • Soelaiman, S., Jakes, K., Wu, N., Li, C., and Shoham, M. (2001). Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol. Cell 8, 1053–1062.PubMedCrossrefGoogle Scholar

  • Song, X., Li, B., Xiao, Y., Chen, C., Wang, Q., Liu, Y., Berezov, A., Xu, C., Gao, Y., Li, Z., et al. (2012). Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep. 1, 665–675.Google Scholar

  • Szilak, L., Moitra, J., Krylov, D., and Vinson, C. (1997). Phosphorylation destabilizes α-helices. Nat. Struct. Biol. 4, 112–114.PubMedCrossrefGoogle Scholar

  • Taya, S., Shinoda, T., Tsuboi, D., Asaki, J., Nagai, K., Hikita, T., Kuroda, S., Kuroda, K., Shimizu, M., Hirotsune, S., et al. (2007). DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J. Neurosci. 27, 15–26.Google Scholar

  • Thomson, P.A., Harris, S.E., Starr, J.M., Whalley, L.J., Porteous, D.J., and Deary, I.J. (2005). Association between genotype at an exonic SNP in DISC1 and normal cognitive aging. Neurosci. Lett. 389, 41–45.Google Scholar

  • Thomson, P.A., Malavasi, E.L.V., Grünewald, E., Soares, D.C., Borkowska, M., and Millar, J.K. (2013). DISC1 genetics, biology and psychiatric illness. Front. Biol. 8, 1–31.CrossrefGoogle Scholar

  • Wang, Q. and Brandon, N.J. (2011). Regulation of the cytoskeleton by Disrupted-in-Schizophrenia 1 (DISC1). Mol. Cell Neurosci. 48, 359–364.Google Scholar

  • Wang, Q., Charych, E.I., Pulito, V.L., Lee, J.B., Graziane, N.M., Crozier, R.A., Revilla-Sanchez, R., Kelly, M.P., Dunlop, A.J., Murdoch, H., et al. (2011). The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol. Psychiatry 16, 1006–1023.Google Scholar

  • Welch, E.J., Jones, B.W., and Scott, J.D. (2010). Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol. Interv. 10, 86–97.CrossrefPubMedGoogle Scholar

  • Zeke, A., Lukacs, M., Lim, W.A., and Remenyi, A. (2009). Scaffolds: interaction platforms for cellular signalling circuits. Trends. Cell Biol. 19, 364–374.PubMedCrossrefGoogle Scholar

About the article

Antony S.K. Yerabham

Antony Sravan Kumar Yerabham completed his Master’s degree at the University of Hyderabad, India in the year 2010. Following this, he received training in Macromolecular Crystallography as a Project Junior Research Fellow in Dr. Rajan Sankaranarayanan’s group at the Centre for Cellular and Molecular Biology, Hyderabad. Currently he is pursuing his Doctoral studies on the structure and function of the DISC1 protein and its interaction partners, in the work group of Prof. Dr. Carsten Korth, at the Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.

Nicholas J. Bradshaw

Nicholas Bradshaw received his BSc in Natural Sciences (Biology with Physics) from Durham University in 2005 and undertook his doctorate at the University of Edinburgh under the supervision of Dr Kirsty Millar and Prof David Porteous on the interactions of the schizophrenia-related proteins DISC1 and NDE1. After receiving his PhD in 2009, Nick continued his research into the biochemical and biophysical properties of these and related proteins pertinent to major mental health in Edinburgh. In 2011 he received a postdoctoral fellowship from the Alexander von Humboldt Foundation to further develop his research in the laboratory of Prof Dr Carsten Korth at the Heinrich Heine University, Düsseldorf.

Carsten Korth

Carsten Korth did his MD at the LMU Munich and PhD at the VU Amsterdam. After a residency in psychiatry at the Max Planck Institute for Psychiatry, he moved to fundamental research in protein conformational disease, first to the University of Zurich where he also co-founded the company Prionics, then to the Institute for Neurodegenerative Diseases, University of California San Francisco (Prof Stanley Prusiner). Since 2002 he is indepdendent investigator at the Heinrich Heine University of Düsseldorf focussing on protein pathology in brain diseases, particularly chronic mental illnesses like schizophrenia or recurrent affective disorders.

Corresponding authors: Nicholas J. Bradshaw and Carsten Korth, Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany, e-mail: ;

Received: 2013-05-14

Accepted: 2013-07-03

Published Online: 2013-07-05

Published in Print: 2013-11-01

Citation Information: Biological Chemistry, Volume 394, Issue 11, Pages 1425–1437, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0178.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sophie Laguesse and Dorit Ron
The Neuroscientist, 2019, Page 107385841985323
Svenja V. Trossbach, Laura Hecher, David Schafflick, René Deenen, Ovidiu Popa, Tobias Lautwein, Sarah Tschirner, Karl Köhrer, Karin Fehsel, Irina Papazova, Berend Malchow, Alkomiet Hasan, Georg Winterer, Andrea Schmitt, Gerd Meyer zu Hörste, Peter Falkai, and Carsten Korth
Translational Psychiatry, 2019, Volume 9, Number 1
Brent Wilkinson, Oleg Evgrafov, DongQing Zheng, Nicolas Hartel, James A. Knowles, Nicholas A. Graham, Justin Ichida, and Marcelo P. Coba
Biological Psychiatry, 2018
Fernando J. Sialana, An-Li Wang, Benedetta Fazari, Martina Kristofova, Roman Smidak, Svenja V. Trossbach, Carsten Korth, Joseph P. Huston, Maria A. de Souza Silva, and Gert Lubec
Frontiers in Molecular Neuroscience, 2018, Volume 11
Antony S. K. Yerabham, Andreas Müller-Schiffmann, Tamar Ziehm, Andreas Stadler, Sabrina Köber, Xela Indurkhya, Rita Marreiros, Svenja V. Trossbach, Nicholas J. Bradshaw, Ingrid Prikulis, Dieter Willbold, Oliver H. Weiergräber, Carsten Korth, and Giuseppe Legname
PLOS ONE, 2018, Volume 13, Number 1, Page e0191162
Qian Wu, Weiting Tang, Zhaohui Luo, Yi Li, Yi Shu, Zongwei Yue, Bo Xiao, and Li Feng
Frontiers in Cellular Neuroscience, 2017, Volume 11
Antony S. K. Yerabham, Philippe J. Mas, Christina Decker, Dinesh C. Soares, Oliver H. Weiergräber, Luitgard Nagel-Steger, Dieter Willbold, Darren J. Hart, Nicholas J. Bradshaw, and Carsten Korth
Journal of Biological Chemistry, 2017, Volume 292, Number 16, Page 6468
Li Shao, Khashayar Golbaz, William G Honer, and Clare L Beasley
Bipolar Disorders, 2016, Volume 18, Number 4, Page 342
Libin Deng, Liwei Hou, Jie Zhang, Xiaoli Tang, Zhujun Cheng, Gang Li, Xin Fang, Jinsong Xu, Xiong Zhang, and Renshi Xu
Molecular Neurobiology, 2017, Volume 54, Number 5, Page 3162
Svenja V. Trossbach, Karin Fehsel, Uwe Henning, Georg Winterer, Christian Luckhaus, Sandra Schäble, M. Angelica de Souza Silva, and Carsten Korth
Behavioural Brain Research, 2014, Volume 275, Page 176
Tatiana V. Lipina and John C. Roder
Neuroscience & Biobehavioral Reviews, 2014, Volume 45, Page 271
Catherine L. Sheppard, Louisa C.Y. Lee, Elaine V. Hill, David J.P. Henderson, Diana F. Anthony, Daniel M. Houslay, Krishna C. Yalla, Lynne S. Cairns, Allan J. Dunlop, George S. Baillie, Elaine Huston, and Miles D. Houslay
Cellular Signalling, 2014, Volume 26, Number 9, Page 1958

Comments (0)

Please log in or register to comment.
Log in