Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 394, Issue 11 (Nov 2013)

Issues

Full-length Vpu and human CD4(372–433) in phospholipid bilayers as seen by magic angle spinning NMR

Hoa Q. Do
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems (ICS-6), Research Center Jülich, D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marc Wittlich
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems (ICS-6), Research Center Jülich, D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julian M. Glück
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems (ICS-6), Research Center Jülich, D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis Möckel
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems (ICS-6), Research Center Jülich, D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dieter Willbold
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems (ICS-6), Research Center Jülich, D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernd W. Koenig
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems (ICS-6), Research Center Jülich, D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henrike Heise
  • Corresponding author
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems (ICS-6), Research Center Jülich, D-52425 Jülich, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-16 | DOI: https://doi.org/10.1515/hsz-2013-0194

Abstract

HIV-1 Vpu and CD4(372–433), a peptide comprising the transmembrane and cytoplasmic domain of human CD4, were recombinantly expressed in Escherichia coli, uniformly labeled with 13C and 15N isotopes, and separately reconstituted into phospholipid bilayers. Highly resolved dipolar cross-polarization (CP)-based solid-state NMR spectra of the two transmembrane proteins were recorded under magic angle sample spinning. Partial assignment of 13C resonances was achieved. Site-specific assignments were obtained for 13 amino acid residues of CD4(372–433) and two Vpu residues. Additional amino acid type-specific assignments were achieved for 10 amino acid spin systems for both CD4(372–433) and Vpu. Further, structural flexibility was probed with different dipolar recoupling techniques, and the correct insertion of the transmembrane domains into the lipid bilayers was confirmed by proton spin diffusion experiments.

This article offers supplementary material which is provided at the end of the article.

Keywords: CD4; HIV-1 Vpu; lipid-edited solid-state NMR spectroscopy; POPC lipid bilayers

References

  • Andrew, E.R., Bradbury, A., and Eades, R.G. (1958). Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182, 1659.Google Scholar

  • Andronesi, O.C., Becker, S., Seidel, K., Heise, H., Young, H.S., and Baldus, M. (2005). Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J. Am. Chem. Soc. 127, 12965–12974.Google Scholar

  • Bloembergen, N. (1949). On the interaction of nuclear spins in a crystalline lattice. Physica 15, 386–426.CrossrefGoogle Scholar

  • Bour, S., Schubert, U., and Strebel, K. (1995). The human-immunodeficiency-virus type-1 Vpu protein secifically binds to the cytoplasmic domain of CD4 – implications for the mechanism of degradation. J. Virol. 69, 1510–1520.Google Scholar

  • Burum, D.P. and Ernst, R.R. (1980). Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei. J. Magn. Reson. 39, 163–168.Google Scholar

  • Chengmayer, C., Quiroga, M., Tung, J.W., Dina, D., and Levy, J.A. (1990). Viral determinants of human-immunodeficiency-virus type-1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J. Virol. 64, 4390–4398.Google Scholar

  • Cherry, R.J. (1975). Protein mobility in membranes. FEBS Lett. 55, 1–7.Google Scholar

  • Cohen, E.A., Terwilliger, E.F., Sodroski, J.G., and Haseltine, W.A. (1988). Identification of a protein encoded by the Vpu gene of HIV-1. Nature 334, 532–534.Google Scholar

  • Cook, G.A., Zhang, H., Park, S.H., Wang, Y., and Opella, S.J. (2011). Comparative NMR studies demonstrate profound differences between two viroporins: p7 of HCV and Vpu of HIV-1. Biochim. Biophys. Acta Biomembr. 1808, 554–560.Google Scholar

  • Cordes, F.S., Tustian, A.D., Sansom, M.S.P., Watts, A., and Fischer, W.B. (2002). Bundles consisting of extended transmembrane segments of Vpu from HIV-1: computer simulations and conductance measurements. Biochemistry 41, 7359–7365.Google Scholar

  • De Angelis, A.A., Nevzorov, A.A., Park, S.H., Howell, S.C., Mrse, A.A., and Opella, S.J. (2004). High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. J. Am. Chem. Soc. 126, 15340–15341.Google Scholar

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.Google Scholar

  • Dube, M., Bego, M.G., Paquay, C., and Cohen, E.A. (2010). Modulation of HIV-1-host interaction: role of the Vpu accessory protein. Retrovirology 7, 114.PubMedGoogle Scholar

  • Fares, C., Qian, J., and Davis, J.H. (2005). Magic angle spinning and static oriented sample NMR studies of the relaxation in the rotating frame of membrane peptides. J. Chem. Phys. 122, 194908–194917.Google Scholar

  • Fischer, W.B., Wang, Y.-T., Schindler, C., and Chen, C.-P. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int. Rev. Cell Mol. Biol. 294, 259–321.Google Scholar

  • Fung, B.M., Khitrin, A.K., and Ermolaev, K. (2000). An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101.Google Scholar

  • Goddard, T.D. and Kneller, D.G. SPARKY 3. University of California, San Francisco, CA.Google Scholar

  • Hartmann, S.R. and Hahn, E.L. (1962). Nuclear double resonance in rotating frame. Phys. Rev. 128, 2042–2053.Google Scholar

  • Heise, H., Köhler, F.H., and Xie, X.L. (2001). Solid-state NMR spectroscopy of paramagnetic metallocenes. J. Magn. Reson. 150, 198–206.Google Scholar

  • Hohwy, M., Rienstra, C.M., Jaroniec, C.P., and Griffin, R.G. (1999). Fivefold symmetric homonuclear dipolar recoupling in rotating solids: application to double quantum spectroscopy. J. Chem. Phys. 110, 7983–7992.Google Scholar

  • Hong, M., Zhang, Y., and Hu, F.H. (2012). Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 63, 1–24.Google Scholar

  • Huster, D., Yao, X.L., and Hong, M. (2002). Membrane protein topology probed by H-1 spin diffusion from lipids using solid-state NMR spectroscopy. J. Am. Chem. Soc. 124, 874–883.Google Scholar

  • Kijac, A., Shih, A.Y., Nieuwkoop, A.J., Schulten, K., Sligar, S.G., and Rienstra, C.M. (2010). Lipid-protein correlations in nanoscale phospholipid bilayers determined by solid-state nuclear magnetic resonance. Biochemistry 49, 9190–9198.Google Scholar

  • Klimkait, T., Strebel, K., Hoggan, M.D., Martin, M.A., and Orenstein, J.M. (1990). The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J. Virol. 64, 621–629.Google Scholar

  • Kochendoerfer, G.G., Jones, D.H., Lee, S., Oblatt-Montal, M., Opella, S.J., and Montal, M. (2004). Functional characterization and NMR Spectroscopy on full-length Vpu from HIV-1 prepared by total chemical synthesis. J. Am. Chem. Soc. 126, 2439–2446.Google Scholar

  • Kumashiro, K.K., Schmidt-Rohr, K., Murphy, O.J., Ouellette, K.L., Cramer, W.A., and Thompson, L.K. (1998). A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J. Am. Chem. Soc. 120, 5043–5051.Google Scholar

  • Lenburg, M.E. and Landau, N.R. (1993). Vpu-induced degradation of CD4 – requirement for specific amino-acid-residues in the cytoplasmic domain of CD4. J. Virol. 67, 7238–7245.Google Scholar

  • Lewis, B.A., Harbison, G.S., Herzfeld, J., and Griffin, R.G. (1985). NMR structural-analysis of a membrane-protein-bacteriorhodopsin peptide backbone orientation and motion. Biochemistry 24, 4671–4679.Google Scholar

  • Litman, B.J., Lewis, E.N., and Levin, I.W. (1991). Packing characteristics of highly unsaturated bilayer lipids: Raman spectroscopic studies of multilamellar phosphatidylcholine dispersions. Biochemistry 30, 313–319.Google Scholar

  • Lowe, I.J. (1959). Free induction decays of rotating solids. Phys. Rev. Lett. 2, 285–287.CrossrefGoogle Scholar

  • Lu, J.X., Sharpe, S., Ghirlando, R., Yau, W.M., and Tycko, R. (2010). Oligomerization state and supramolecular structure of the HIV-1 Vpu protein transmembrane segment in phospholipid bilayers. Protein Sci. 19, 1877–1896.Google Scholar

  • Luca, S., Filippov, D.V., van Boom, J.H., Oschkinat, H., de Groot, H.J.M., and Baldus, M. (2001). Secondary chemical shifts in immobilized peptides and proteins: A qualitative basis for structure refinement under Magic Angle Spinning. J. Biomol. NMR 20, 325–331.CrossrefGoogle Scholar

  • Luis Nieva, J., Madan, V., and Carrasco, L. (2012). Viroporins: structure and biological functions. Nat Rev Microbiol 10, 563–574.CrossrefGoogle Scholar

  • Ma, C., Marassi, F.M., Jones, D.H., Straus, S.K., Bour, S., Strebel, K., Schubert, U., Oblatt-Montal, M., Montal, M., and Opella, S.J. (2002). Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci. 11, 546–557.PubMedGoogle Scholar

  • Maddon, P.J., Littman, D.R., Godfrey, M., Maddon, D.E., Chess, L., and Axel, R. (1985). The isolation and nucleotide-sequence of a cDNA encoding the T-cell surface protein T4 – a newer member of the immunoglobulin gene family. Cell 42, 93–104.Google Scholar

  • Maddon, P.J., Molineaux, S.M., Maddon, D.E., Zimmerman, K.A., Godfrey, M., Alt, F.W., Chess, L., and Axel, R. (1987). Structure and expression of the human and mouse T4 genes. Proc. Natl. Acad. Sci. USA 84, 9155–9159.Google Scholar

  • Magadan, J.G. and Bonifacino, J.S. (2012). Transmembrane domain determinants of CD4 downregulation by HIV-1 Vpu. J. Virol. 86, 757–772.Google Scholar

  • Magadan, J.G., Perez-Victoria, F.J., Sougrat, R., Ye, Y., Strebel, K., and Bonifacino, J.S. (2010). Multilayered mechanism of CD4 downregulation by HIV-1 Vpu involving distinct ER retention and ERAD targeting steps. PLoS Pathog. 6, e1000869.Google Scholar

  • Maldarelli, F., Chen, M.Y., Willey, R.L., and Strebel, K. (1993). Human-immunodeficiency-virus type-1 Vpu protein is an oligomeric type-I integral membrane-protein. J. Virol. 67, 5056–5061.Google Scholar

  • Marassi, F.M., Das, B.B., Lu, G.J., Nothnagel, H.J., Park, S.H., Son, W.S., Tian, Y., and Opella, S.J. (2011). Structure determination of membrane proteins in five easy pieces. Methods 55, 363–369.Google Scholar

  • Margottin, F., Benichou, S., Durand, H., Richard, V., Liu, L.X., Gomas, E., and Benarous, R. (1996). Interaction between the cytoplasmic domains of HIV-1 Vpu and CD4: role of Vpu residues involved in CD4 interaction and in vitro CD4 degradation. Virology 223, 381–386.Google Scholar

  • McDermott, A. (2009). Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu. Rev. Biophys. 38, 385–403.Google Scholar

  • Miao, Y., Qin, H., Fu, R., Sharma, M., Can, T.V., Hung, I., Luca, S., Gor’kov, P.L., Brey, W.W., and Cross, T.A. (2012). M2 proton channel structural validation from full-length protein samples in synthetic bilayers and E. coli membranes. Angew. Chem. Int. Ed. 51, 8383–8386.Google Scholar

  • Morris, G.A. and Freeman, R. (1979). Enhancement of nuclear magnetic-resonance signals by polarization transfer. J. Am. Chem. Soc. 101, 760–762.Google Scholar

  • Neil, S.J.D., Zang, T., and Bieniasz, P.D. (2008). Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–U421.Google Scholar

  • Page, R.C., Li, C., Hu, J., Gao, F.P., and Cross, T.A. (2007). Lipid bilayers: an essential environment for the understanding of membrane proteins. Magn. Reson. Chem. 45, S2–S11.Google Scholar

  • Park, S.H. and Opella, S.J. (2005). Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J. Mol. Biol. 350, 310–318.Google Scholar

  • Park, S.H. and Opella, S.J. (2007). Conformational changes induced by a single amino acid substitution in the trans-membrane domain of Vpu: Implications for HIV-1 susceptibility to channel blocking drugs. Protein Sci. 16, 2205–2215.Google Scholar

  • Park, S.H., Mrse, A.A., Nevzorov, A.A., Mesleh, M.F., Oblatt-Montal, M., Montal, M., and Opella, S.J. (2003). Three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) from HIV-1. J. Mol. Biol. 333, 409–424.Google Scholar

  • Park, S.H., De Angelis, A.A., Nevzorov, A.A., Wu, C.H., and Opella, S.J. (2006a). Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Biophys J. 91, 3032–3042.Google Scholar

  • Park, S.H., Mrse, A.A., Nevzorov, A.A., De Angelis, A.A., and Opella, S.J. (2006b). Rotational diffusion of membrane proteins in aligned phospholipid bilayers by solid-state NMR spectroscopy. J. Magn. Reson. 178, 162–165.Google Scholar

  • Pines, A., Gibby, M.G., and Waugh, J.S. (1973). Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590.Google Scholar

  • Schubert, U., Bour, S., FerrerMontiel, A.V., Montal, M., Maldarelli, F., and Strebel, K. (1996a). The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J. Virol. 70, 809–819.Google Scholar

  • Schubert, U., FerrerMontiel, A.V., OblattMontal, M., Henklein, P., Strebel, K., and Montal, M. (1996b). Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 398, 12–18.Google Scholar

  • Seidel, K., Lange, A., Becker, S., Hughes, C.E., Heise, H., and Baldus, M. (2004). Protein solid-state NMR resonance assignments from (C-13, C-13) correlation spectroscopy. Phys. Chem. Chem. Phys. 6, 5090–5093.Google Scholar

  • Sharpe, S., Yau, W.M., and Tycko, R. (2006). Structure and dynamics of the HIV-1 Vpu transmembrane domain revealed by solid-state NMR with magic-angle spinning. Biochemistry 45, 918–933.Google Scholar

  • Singh, S.K., Mockel, L., Thiagarajan-Rosenkranz, P., Wittlich, M., Willbold, D., and Koenig, B.W. (2012). Mapping the interaction between the cytoplasmic domains of HIV-1 viral protein U and human CD4 with NMR spectroscopy. FEBS J. 279, 3705–3714.Google Scholar

  • Strebel, K., Klimkait, T., and Martin, M.A. (1988). A novel gene of HIV-1, Vpu, and its 16-kilodalton product. Science 241, 1221–1223.Google Scholar

  • Strebel, K., Klimkait, T., Maldarelli, F., and Martin, M.A. (1989). Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J. Virol. 63, 3784–3791.Google Scholar

  • Szeverenyi, N.M., Sullivan, M.J., and Maciel, G.E. (1982). Observation of spin exchange by two-dimensional Fourier-transform C-13 cross polarization magic-angle spinning. J. Magn. Reson. 47, 462–475.Google Scholar

  • Tiganos, E., Yao, X.J., Friborg, J., Daniel, N., and Cohen, E.A. (1997). Putative α-helical structures in the human immunodeficiency virus type 1 Vpu protein and CD4 are involved in binding and degradation of the CD4 molecule. J. Virol. 71, 4452–4460.Google Scholar

  • Van Damme, N., Goff, D., Katsura, C., Jorgenson, R.L., Mitchell, R., Johnson, M.C., Stephens, E.B., and Guatelli, J. (2008). The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252.Google Scholar

  • Vincent, M.J., Raja, N.U., and Jabbar, M.A. (1993). Human-immunodeficiency-virus type-1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4 – role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic-reticulum. J. Virol. 67, 5538–5549.Google Scholar

  • Wei, Y., Lee, D.-K., and Ramamoorthy, A. (2001). Solid-state 13C NMR chemical shift anisotropy tensors of polypeptides. J. Am. Chem. Soc. 123, 6118–6126.Google Scholar

  • Willey, R.L., Bucklerwhite, A., and Strebel, K. (1994). Sequences present in the cytoplasmic domain of CD4 are necessary and sufficient to confer sensitivity to the human-immunodeficiency-virus type-1 Vpu protein. J. Virol. 68, 1207–1212.Google Scholar

  • Wittlich, M., Koenig, B.W., Hoffmann, S., and Willbold, D. (2007a). Structural characterization of the transmembrane and cytoplasmic domains of human CD4. Biochim. Biophys. Acta Biomembr. 1768, 2949–2960.Google Scholar

  • Wittlich, M., Wiesehan, K., Koenig, B.W., and Willbold, D. (2007b). Expression, purification, and membrane reconstitution of a CD4 fragment comprising the transmembrane and cytoplasmic domains of the receptor. Protein Expr. Purif. 55, 198–207.Google Scholar

  • Wittlich, M., Koenig, B.W., Stoldt, M., Schmidt, H., and Willbold, D. (2009). NMR structural characterization of HIV-1 virus protein U cytoplasmic domain in the presence of dodecylphosphatidylcholine micelles. FEBS J. 276, 6560–6575.Google Scholar

  • Wittlich, M., Thiagarajan, P., Koenig, B.W., Hartmann, R., and Willbold, D. (2010). NMR structure of the transmembrane and cytoplasmic domains of human CD4 in micelles. Biochim. Biophys. Acta Biomembr. 1798, 122–127.Google Scholar

  • Yang, J., Aslimovska, L., and Glaubitz, C. (2011). Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J. Am. Chem. Soc. 133, 4874–4881.Google Scholar

  • Yao, X.J., Friborg, J., Checroune, F., Gratton, S., Boisvert, F., Sekaly, R.P., and Cohen, E.A. (1995). Degradation of CD4 induced by human-immunodeficiency-virus type-1 Vpu protein – a predicted alpha-helix structure in the proximal cytoplasmic region of CD4 contributes to Vpu sensitivity. Virology 209, 615–623.Google Scholar

About the article

Corresponding author: Henrike Heise, Institute of Complex Systems (ICS-6), Research Center Jülich, D-52425 Jülich, Germany; and Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, e-mail:


Received: 2013-05-28

Accepted: 2013-07-13

Published Online: 2013-07-16

Published in Print: 2013-11-01


Citation Information: Biological Chemistry, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0194.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Benjamin J. Wylie, Hoa Q. Do, Collin G. Borcik, and Emily P. Hardy
Molecular Physics, 2016, Volume 114, Number 24, Page 3598
[2]
Matthew R. Rosenberg, Llara M. Weaver, and Marco G. Casarotto
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016, Volume 1858, Number 4, Page 733
[3]
Hua Zhang, Eugene C. Lin, Bibhuti B. Das, Ye Tian, and Stanley J. Opella
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2015, Volume 1848, Number 11, Page 3007
[4]
Stanley J Opella
Current Opinion in Virology, 2015, Volume 12, Page 121
[5]
Caitlin M. Quinn, Manman Lu, Christopher L. Suiter, Guangjin Hou, Huilan Zhang, and Tatyana Polenova
Progress in Nuclear Magnetic Resonance Spectroscopy, 2015, Volume 86-87, Page 21

Comments (0)

Please log in or register to comment.
Log in