Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 394, Issue 6

Issues

The formate/nitrite transporter family of anion channels

Wei Lü
  • Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan Du
  • Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nikola J. Schwarzer
  • Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tobias Wacker
  • Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susana L.A. Andrade
  • Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Hebelstrasse 25, D-79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Einsle
  • Corresponding author
  • Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Hebelstrasse 25, D-79104 Freiburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-05 | DOI: https://doi.org/10.1515/hsz-2012-0339

Abstract

The formate/nitrite transporter (FNT) family of integral membrane proteins comprises pentameric channels for monovalent anions that exhibit a broad specificity for small anions such as chloride, the physiological cargo molecules formate, nitrite, and hydrosulfide, and also larger organic acids. Three-dimensional structures are available for the three known subtypes, FocA, NirC, and HSC, which reveal remarkable evolutionary optimizations for the respective physiological context of the channels. FNT channels share a conserved translocation pathway in each protomer, with a central hydrophobic cavity that is separated from both sides of the membrane by a narrow constriction. A single protonable residue, a histidine, plays a key role by transiently protonating the transported anion to allow an uncharged species to pass the hydrophobic barrier. Further selectivity is reached through variations in the electrostatic surface potential of the proteins, priming the formate channel FocA for anion export, whereas NirC and HSC should work bidirectionally. Electrophysiological studies have shown that a broad variety of monovalent anions can be transported, and in the case of FocA, these match exactly the products of mixed-acid fermentation, the predominant metabolic pathway for most enterobacterial species.

Keywords: electrophysiology; formate channel; hydrosulfide channel; membrane proteins; nitrite channel; protein crystallography

References

  • Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A., and Nielsen, S. (2002). Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol. 542, 3–16.Google Scholar

  • Berks, B.C., Ferguson, S.J., Moir, J.W.B., and Richardson, D.J. (1995). Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta 1232, 97–173.Google Scholar

  • Brett, P.J., Burtnick, M.N., Su, H., Nair, V., and Gherardini, F.C. (2008). iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages. Cell Microbiol. 10, 487–498.Google Scholar

  • Chakravortty, D. and Hensel, M. (2003). Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microb. Infect. 5, 621–627.Google Scholar

  • Clegg, S., Yu, F., Griffiths, L., and Cole, J.A. (2002). The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol. Microbiol. 44, 143–155.Google Scholar

  • Cole, J. (1996). Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136, 1–11.Google Scholar

  • Czyzewski, B.K. and Wang, D.N. (2012). Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483, 494–497.Web of ScienceGoogle Scholar

  • Das, P., Lahiri, A., Lahiri, A., and Chakravortty, D. (2009). Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages. Microbiology 155, 2476–2489.Web of ScienceGoogle Scholar

  • Delomenie, C., Foti, E., Floch, E., Diderot, V., Porquet, D., Dupuy, C., and Bonaly, J. (2007). A new homolog of FocA transporters identified in cadmium-resistant Euglena gracilis. Biochem. Biophys. Res. Commun. 358, 455–461.Web of ScienceGoogle Scholar

  • Einsle, O. (2011). Structure and function of formate-dependent cytochrome c nitrite reductase, NrfA. Methods Enzymol. 496, 399–422.Web of ScienceGoogle Scholar

  • Einsle, O. and Kroneck, P.M.H. (2004). Structural basis of denitrification. Biol. Chem. 385, 875–883.Google Scholar

  • Eisenman, G. and Horn, R. (1983). Ionic selectivity revisited – the role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76, 197–225.Google Scholar

  • Falke, D., Schulz, K., Doberenz, C., Beyer, L., Lilie, H., Thiemer, B., and Sawers, R.G. (2010). Unexpected oligomeric structure of the FocA formate channel of Escherichia coli: a paradigm for the formate-nitrite transporter family of integral membrane proteins. FEMS Microbiol. Lett. 303, 69–75.Web of ScienceGoogle Scholar

  • Feng, Z., Hou, T., and Li, Y. (2012). Concerted movement in pH-dependent gating of FocA from molecular dynamics simulations. J. Chem. Inf. Model. 52, 2119–2131.Web of ScienceGoogle Scholar

  • Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd edition. (Sunderland, MA: Sinauer Associates).Google Scholar

  • Jia, W.J., Tovell, N., Clegg, S., Trimmer, M., and Cole, J. (2009). A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417, 297–304.Web of ScienceGoogle Scholar

  • Kaback, H.R. (1974). Transport studies in bacterial-membrane vesicles. Science 186, 882–892.Google Scholar

  • Knappe, J. and Sawers, G. (1990). A radical-chemical route to acetyl-CoA – the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol. Rev. 75, 383–398.Google Scholar

  • Latorre, R. and Miller, C. (1983). Conduction and selectivity in potassium channels. J. Membr. Biol. 71, 11–30.Google Scholar

  • Leonhartsberger, S., Korsa, I., and Böck, A. (2002). The molecular biology of formate metabolism in enterobacteria. J. Mol. Microb. Biotechnol. 4, 269–276.Google Scholar

  • Lü, W., Du, J., Wacker, T., Gerbig-Smentek, E., Andrade, S.L.A., and Einsle, O. (2011). pH-Dependent gating in a FocA formate channel. Science 332, 352–354.Web of ScienceGoogle Scholar

  • Lü, W., Du, J., Schwarzer, N.J., Gerbig-Smentek, E., Einsle, O., and Andrade, S.L. (2012a). The formate channel FocA exports the products of mixed-acid fermentation. Proc. Natl. Acad. Sci. USA 109, 13254–13259.Google Scholar

  • Lü, W., Schwarzer, N.J., Du, J., Gerbig-Smentek, E., Andrade, S.L.A., and Einsle, O. (2012b). Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 109, 18395–18400.Google Scholar

  • Martinez-Espinosa, R.M., Cole, J.A., Richardson, D.J., and Watmough, N.J. (2011). Enzymology and ecology of the nitrogen cycle. Biochem. Soc. Trans. 39, 175–178.Web of ScienceGoogle Scholar

  • Miller, C. (2006). CIC chloride channels viewed through a transporter lens. Nature 440, 484–489.Google Scholar

  • Moir, J.W.B. and Wood, N.J. (2001). Nitrate and nitrite transport in bacteria. Cell. Mol. Life Sci. 58, 215–224.Google Scholar

  • Peakman, T., Crouzet, J., Mayaux, J.F., Busby, S., Mohan, S., Harborne, N., Wootton, J., Nicolson, R., and Cole, J.A. (1990). Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur. J. Biochem. 191, 315–323.Google Scholar

  • Rosen, B.P. (1986). Ion extrusion systems in Escherichia coli. Methods Enzymol. 125, 328–336.Google Scholar

  • Rycovska, A., Hatahet, L., Fendler, K., and Michel, H. (2012). The nitrite transport protein NirC from Salmonella typhimurium is a nitrite/proton antiporter. Biochim. Biophys. Acta 1818, 1342–1350.Google Scholar

  • Saier, M.H. Jr., Eng, B.H., Fard, S., Garg, J., Haggerty, D.A., Hutchinson, W.J., Jack, D.L., Lai, E.C., Liu, H.J., Nusinew, D.P., et al. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422, 1–56.Google Scholar

  • Sawers, G. (1998). Biochemistry, physiology and molecular biology of glycyl radical enzymes. FEMS Microbiol. Rev. 22, 543–551.Google Scholar

  • Sawers, R.G. (2005). Formate and its role in hydrogen production in Escherichia coli. Biochem. Soc. Trans. 33, 42–46.Google Scholar

  • Singer, S.J. (1990). The structure and insertion of integral proteins in membranes. Annu. Rev. Cell. Biol. 6, 247–296.Google Scholar

  • Singer, S.J. and Nicolson, G.L. (1972). Fluid mosaic model of structure of cell membranes. Science 175, 720–731.Google Scholar

  • Slater, E.C., Skulache,V.P., Azzone, G.F., Crofts, A.R., Pressman, B.C., Ernster, L., Harold, F.M., Kaback, H.R., Hinkle, P., Weber, M., et al. (1974). Mechanisms of active-transport – general discussion. Ann. NY Acad. Sci. 227, 348–354.Google Scholar

  • Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A., and Sansom, M.S. (1996). HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360.Google Scholar

  • Suppmann, B. and Sawers, G. (1994). Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli – identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol. Microbiol. 11, 965–982.Google Scholar

  • Tsien, R.W., Hess, P., Mccleskey, E.W., and Rosenberg, R.L. (1987). Calcium channels – mechanisms of selectivity, permeation, and block. Annu. Rev. Biophys. Biol. 16, 265–290.Google Scholar

  • von Heijne, G. and Gavel, Y. (1988). Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678.Google Scholar

  • Waight, A.B., Love, J., and Wang, D.N. (2010). Structure and mechanism of a pentameric formate channel. Nat. Struct. Mol. Biol. 17, 31–37.Google Scholar

  • Wang, Y., Huang, Y.J., Wang, J.W., Cheng, C., Huang, W.J., Lu, P.L., Xu, Y.N., Wang, P.Y., Yan, N., and Shi, Y.G. (2009). Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462, 467–472.Web of ScienceGoogle Scholar

  • White, W.B. and Ferry, J.G. (1992). Identification of formate dehydrogenase-specific messenger-RNA species and nucleotide-sequence of the fdhC gene of Methanobacterium formicicum. J. Bacteriol. 174, 4997–5004.Google Scholar

  • Xie, Q. and Nathan, C. (1994). The high-output nitric oxide pathway: role and regulation. J. Leukoc. Biol. 56, 576–582.Google Scholar

  • Yang, Y.T., Bennett, G.N., and San, K.Y. (2001). The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. Metab. Eng. 3, 115–123.Google Scholar

About the article

Corresponding author: Oliver Einsle, Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Hebelstrasse 25, D-79104 Freiburg, Germany


Received: 2012-11-26

Accepted: 2013-02-04

Published Online: 2013-02-05

Published in Print: 2013-06-01


Citation Information: Biological Chemistry, Volume 394, Issue 6, Pages 715–727, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2012-0339.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Doreen Hunger, Marie Röcker, Dörte Falke, Hauke Lilie, and R. Gary Sawers
Frontiers in Microbiology, 2017, Volume 8
[2]
Siladitya Padhi, Lekkala Karthik Reddy, and U. Deva Priyakumar
Molecular Simulation, 2017, Page 1
[3]
Marie Wiechert, Holger Erler, André Golldack, and Eric Beitz
The FEBS Journal, 2017, Volume 284, Number 16, Page 2663
[5]
Lucas Moitinho-Silva, Cristina Díez-Vives, Giampiero Batani, Ana IS Esteves, Martin T Jahn, and Torsten Thomas
The ISME Journal, 2017, Volume 11, Number 7, Page 1651
[6]
Miao Jin, Huihui Fu, Jianhua Yin, Jie Yuan, and Haichun Gao
Frontiers in Microbiology, 2016, Volume 7
[7]
Julia Holm-Bertelsen, Sinja Bock, Folknand Helmstetter, and Eric Beitz
Protein Expression and Purification, 2016, Volume 126, Page 109
[8]
Dörte Falke, Claudia Doberenz, Doreen Hunger, and R. Gary Sawers
Biochemistry and Biophysics Reports, 2016, Volume 6, Page 185
[9]
Yingjun Wang, Dan J. Stessman, and Martin H. Spalding
The Plant Journal, 2015, Volume 82, Number 3, Page 429
[10]
Rosa V. Marchetti, Adele M. Lehane, Sarah H. Shafik, Markus Winterberg, Rowena E. Martin, and Kiaran Kirk
Nature Communications, 2015, Volume 6, Page 6721
[11]
José M. Carvajal-Arroyo, Daniel Puyol, Guangbin Li, Reyes Sierra-Álvarez, and Jim A. Field
Biotechnology and Bioengineering, 2014, Volume 111, Number 10, Page 1949
[12]
Claudia Doberenz, Michael Zorn, Dörte Falke, David Nannemann, Doreen Hunger, Lydia Beyer, Christian H. Ihling, Jens Meiler, Andrea Sinz, and R. Gary Sawers
Journal of Molecular Biology, 2014, Volume 426, Number 15, Page 2827
[13]
Xiaoying Lv, Huihui Liu, Meng Ke, and Haipeng Gong
Biophysical Journal, 2013, Volume 105, Number 12, Page 2714
[14]
Susana L. A. Andrade and Oliver Einsle
Angewandte Chemie International Edition, 2013, Volume 52, Number 40, Page 10422
[15]
Susana L. A. Andrade and Oliver Einsle
Angewandte Chemie, 2013, Volume 125, Number 40, Page 10614
[16]
Andrew B Waight, Bryan K Czyzewski, and Da-Neng Wang
Current Opinion in Structural Biology, 2013, Volume 23, Number 4, Page 499

Comments (0)

Please log in or register to comment.
Log in