Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 394, Issue 7


Galectins: new agonists of platelet activation

Mirta Schattner
  • Corresponding author
  • Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX/CONICET), National Academy of Medicine, C1425, Buenos Aires, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriel A. Rabinovich
  • Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME/CONICET), C1428, Buenos Aires, Argentina
  • Laboratory of Structural and Functional Glycomics, School of Exact and Natural Sciences, University of Buenos Aires, C1428, Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-18 | DOI: https://doi.org/10.1515/hsz-2013-0108


Platelet activation at sites of vascular injury leads to the formation of a hemostatic plug and is crucial for hemostasis. However, uncontrolled platelet activation may lead to the formation of occlusive thrombi. Several soluble or matricellular proteins can activate platelets. In this article, we review recent advances in knowledge of the role of galectins in platelet physiology. In soluble or immobilized form, these endogenous glycan-binding proteins trigger platelet activation through the modulation of discrete signaling pathways. We discuss the role of platelet–galectin interactions not only in hemostasis, but also in chronic inflammation, atherosclerosis and cancer.

Keywords: atherosclerosis; cancer; galectins; hemostasis; inflammation; platelets


  • Al-Ansari, S., Zeebregts, C.J., Slart, R.H., Peppelenbosch, M., and Tio, R.A. (2009). Galectins in atherosclerotic disease. Trends. Cardiovasc. Med. 19, 164–169.Google Scholar

  • Angiolillo DJ, Ueno M, Goto S. (2010). Basic principles of platelet biology and clinical implications. Circ. J. 74, 597–607.Web of ScienceGoogle Scholar

  • Bidon-Wagner, N. and Le Pennec, J.P. (2004). Human galectin-8 isoforms and cancer. Glycoconj. J. 19, 557–563.Google Scholar

  • Cattaneo, V., Tribulatti, M.V., and Campetella, O. (2011). Galectin-8 tandem-repeat structure is essential for T-cell proliferation but not for co-stimulation. Biochem J. 434, 153–160.Web of ScienceGoogle Scholar

  • Davicino, R.C., Eliçabe, R.J., Di Genaro, M.S., and Rabinovich, G.A. (2011). Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms. Int. Immunopharmacol. 11, 1457–1463.Google Scholar

  • Di Lella, S., Sundblad, V., Cerliani, J.P., Guardia, C.M., Estrin, D.A., Vasta, G.R., and Rabinovich, G.A. (2011). When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50, 7842–7857.Google Scholar

  • Dotsenko, O., Chaturvedi, N., Thom, S.A., Wright, A.R., Mayet, J., Shore, A., Schalkwijk, C., and Hughes, A.D. (2007). Platelet and leukocyte activation, atherosclerosis and inflammation in European and South Asian men. J. Thromb. Haemost. 5, 2036–2042.Web of ScienceGoogle Scholar

  • Etulain, J.S.M. (2012). Current viewpoints on platelet contribution to inflammation. World J. Hematol. 1, 14–21.Google Scholar

  • Leslie, M. (2010). Cell biology. Beyond clotting: the powers of platelets. Science 328, 562–564.Web of ScienceGoogle Scholar

  • Liu, F.T. and Rabinovich, G.A. (2005). Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41.Google Scholar

  • Liu, F.T. and Rabinovich, G.A. (2010). Galectins: regulators of acute and chronic inflammation. Ann. N. Y. Acad. Sci. 1183, 158–182.Google Scholar

  • Luo, G.P., Ni, B., Yang, X., and Wu, Y.Z. (2012). von Willebrand factor: more than a regulator of hemostasis and thrombosis. Acta. Haematol. 128, 158–169.Web of ScienceGoogle Scholar

  • Ma, Y.Q., Qin, J., and Plow, E.F. (2007). Platelet integrin alpha(IIb)beta(3): activation mechanisms. J. Thromb. Haemost. 5, 1345–1352.Google Scholar

  • May, A.E., Seizer, P., and Gawaz, M. (2008). Platelets: inflammatory firebugs of vascular walls. Arterioscler. Thromb. Vasc. Biol. 28, s5–10.Web of ScienceCrossrefGoogle Scholar

  • Morel, O., Toti, F., Hugel, B., Bakouboula, B., Camoin-Jau, L., Dignat-George, F., and Freyssinet, J.M. (2006). Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler. Thromb. Vasc. Biol. 26, 2594–2604.Google Scholar

  • Nurden, A.T., Nurden, P., Sanchez, M., Andia, I., and Anitua, E. (2008). Platelets and wound healing. Front. Biosci. 13, 3532–3548.Web of ScienceGoogle Scholar

  • Ozaki, Y., Asazuma, N., Suzuki-Inoue, K., and Berndt, M.C. (2005). Platelet GPIb-IX-V-dependent signaling. J. Thromb. Haemost. 3, 1745–1751.Google Scholar

  • Pacienza, N., Pozner, R.G., Bianco, G.A., D’Atri, L.P., Croci, D.O., Negrotto, S., Malaver, E., Gómez, R.M., Rabinovich, G.A., and Schattner, M. (2008). The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. Faseb. J. 22, 1113–1123.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Rabinovich, G.A. and Toscano, M.A. (2009). Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352.PubMedCrossrefGoogle Scholar

  • Rabinovich, G.A., Toscano, M.A., Jackson, S.S., and Vasta, G.R. (2007). Functions of cell surface galectin-glycoprotein lattices. Curr. Opin. Struct. Biol. 17, 513–520.Web of ScienceGoogle Scholar

  • Rivera, J., Lozano, M.L., Navarro-Núñez, L., and Vicente, V. (2009). Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94, 700–711.Web of ScienceGoogle Scholar

  • Romaniuk, M.A., Tribulatti, M.V., Cattaneo, V., Lapponi, M.J., Molinas, F.C., Campetella, O., and Schattner, M. (2010). Human platelets express and are activated by galectin-8. Biochem J. 432, 535–547.Web of ScienceGoogle Scholar

  • Romaniuk, M.A., Negrotto, S., Campetella, O., Rabinovich, G.A., and Schattner, M. (2011). Identification of galectins as novel regulators of platelet signaling and function. IUBMB Life 63, 521–527.Web of ScienceGoogle Scholar

  • Romaniuk, M.A., Croci, D.O., Lapponi, M.J., Tribulatti, M.V., Negrotto, S., Poirier, F., Campetella, O., Rabinovich, G.A., and Schattner, M. (2012). Binding of galectin-1 to alphaIIbbeta(3) integrin triggers “outside-in” signals, stimulates platelet activation, and controls primary hemostasis. Faseb. J. 26, 2788–2798.Web of ScienceGoogle Scholar

  • Saint-Lu, N., Oortwijn, B.D., Pegon, J.N., Odouard, S., Christophe, O.D., de Groot, P.G., Denis, C.V., and Lenting, P.J. (2012). Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arterioscler. Thromb. Vasc. Biol. 32, 894–901.Web of ScienceGoogle Scholar

  • Thijssen, V.L., Postel, R., Brandwijk, R.J., Dings, R.P., Nesmelova, I., Satijn, S., Verhofstad, N., Nakabeppu, Y., Baum, L.G., Bakkers, J., et al. (2006). Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl. Acad. Sci. USA 103, 15975–15980.Google Scholar

  • Thijssen, V.L., Hulsmans, S., and Griffioen, A.W. (2008). The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. Am. J. Pathol. 172, 545–553.Google Scholar

  • Torti, M., Festetics, E.T., Bertoni, A., Sinigaglia, F., and Balduini, C. (1999). Clustering of integrin alphaIIb-beta3 differently regulates tyrosine phosphorylation of pp72syk, PLCgamma2 and pp125FAK in concanavalin A-stimulated platelets. Thromb. Haemost. 81, 124–130.Google Scholar

  • Wagner, D.D. (2005). New links between inflammation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 25, 1321–1324.Google Scholar

  • Yang, R.Y., Rabinovich, G.A., and Liu, F.T. (2008). Galectins: structure, function and therapeutic potential. Expert. Rev. Mol. Med. 10, e17.CrossrefGoogle Scholar

  • Zappelli, C., van der Zwaan, C., Thijssen-Timmer, D.C., Mertens, K., and Meijer, A.B. (2012). Novel role for galectin-8 protein as mediator of coagulation factor V endocytosis by megakaryocytes. J. Biol. Chem. 287, 8327–8335.Web of ScienceGoogle Scholar

About the article

Corresponding author: Mirta Schattner, Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX/CONICET), National Academy of Medicine, C1425, Buenos Aires, Argentina

Received: 2013-01-11

Accepted: 2013-03-14

Published Online: 2013-03-18

Published in Print: 2013-07-01

Citation Information: Biological Chemistry, Volume 394, Issue 7, Pages 857–863, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0108.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ilya Reviakine
Clinical Hemorheology and Microcirculation, 2015, Volume 60, Number 1, Page 133
Antonietta Restuccia, Ye F. Tian, Joel H. Collier, and Gregory A. Hudalla
Cellular and Molecular Bioengineering, 2015, Volume 8, Number 3, Page 471
Helen Blanchard, Khuchtumur Bum-Erdene, and Matthew W. Hugo
Australian Journal of Chemistry, 2014, Volume 67, Number 12, Page 1763
Swati Gupta and Ilya Reviakine
Biochimica et Biophysica Acta (BBA) - General Subjects, 2014, Volume 1840, Number 12, Page 3423
Laura Restelli, Marius Cosmin Codrea, Giovanni Savoini, Fabrizio Ceciliani, and Emoke Bendixen
Journal of Proteomics, 2014, Volume 108, Page 295

Comments (0)

Please log in or register to comment.
Log in