Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 394, Issue 7

Issues

Biochemical characterization of an S-adenosyl-l-methionine-dependent methyltransferase (Rv0469) of Mycobacterium tuberculosis

Laxman S. Meena
  • Corresponding author
  • CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi 110007, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Puneet Chopra
  • CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi 110007, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ram A. Vishwakarma / Yogendra Singh
  • CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi 110007, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-21 | DOI: https://doi.org/10.1515/hsz-2013-0126

Abstract

Tuberculostearic acid (l0-methylstearic acid, TSA) is a major constituent of mycobacterial membrane phospholipids, and its biosynthesis involves the direct methylation of oleic acid esterified as a component of phospholipids. The methyltransferases of mycobacteria were long proposed to be involved in the synthesis of methyl-branched short-chain fatty acids, but direct experimental evidence is still lacking. In this study, we identified the methyltransferase encoded by umaA in Mycobacterium tuberculosis H37Rv as a novel S-adenosyl-l-methionine (SAM)-dependent methyltransferase capable of catalyzing the conversion of olefinic double bond of phospholipid-linked oleic acid to biologically essential TSA. Therefore, UmaA, catalyzing such modifications, offer a viable target for chemotherapeutic intervention.

Keywords: fatty acid; methyltransferase; Mycobacterium tuberculosis; oleic acid; S-adenosyl-l-methionine; tuberculostearic acid

References

  • Akamatsu, Y. and Law, J.H. (1970). Enzymatic alkylenation of phospholipid fatty acid chains by extracts of Mycobacterium phlei. J. Biol. Chem. 245, 701–708.Google Scholar

  • Ballou, C.E., Vilkas, E., and Lederer, E. (1963). Structural studies on the myo-inositol phospholipids of Mycobacterium tuberculosis (var. bovis, strain BCG). J. Biol. Chem. 238, 69–76.Google Scholar

  • Besra, G.S., Morehouse, C.B., Rittner, C.M., Waechter, C.J., and Brennan, P.J. (1997). Biosynthesis of mycobacterial lipoarabinomannan. J. Biol. Chem. 272, 18460–18466.Google Scholar

  • Campbell, I.M. and Naworal, J. (1969). Composition of the saturated and monounsaturated fatty acids of Mycobacterium phlei. J. Lipid Res. 10, 593–598.Google Scholar

  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.Google Scholar

  • Dmitriev, B.A., Ehlers, S., Rietschel, E.T., and Brennan, P.J. (2000). Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. J. Med. Microbiol. 290, 251–258.Google Scholar

  • Glickman, M.S., Cahill, S.M., and Jacobs, W.R. Jr. (2000). The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J. Biol. Chem. 276, 2228–2233.Google Scholar

  • Goren, M.B. (1984). The mycobacteria: a sourcebook (New York: Marcel Dekker Inc.), pp. 379–415.Google Scholar

  • Grzegorzewicz, A.E., Kordulakova, J., Jones, V., Born, S.E., Belardinelli, J.M., Vaquie, A., Gundi, V.A., Madacki, J., Slama, N., Laval, F., et al. (2012). A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J. Biol. Chem. 287, 38434–38441.Web of ScienceGoogle Scholar

  • Jackson, M., Crick, D.C., and Brennan, P.J. (2000). Phosphatidylinositol is an essential phospholipid of mycobacteria. J. Biol. Chem. 275, 30092–30099.Google Scholar

  • Laval, F., Haites, R., Movahedzadeh, F., Lemassu, A., Wong, C.Y., Stoker, N., Billman-Jacobe, H., and Daffe, M. (2008). Investigating the function of the putative mycolic acid methyltransferase UmaA: divergence between the Mycobacterium smegmatis and Mycobacterium tuberculosis proteins. J. Biol. Chem. 283, 1419–1427.Google Scholar

  • McAdam, R.A., Quan, S., Smith, D.A., Bardarov, S., Betts, J.C., Cook, F.C., Hooker, E.U., Lewis, A.P., Woollard, P., Everett, M.J., et al. (2002). Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology 148, 2975–2986.Google Scholar

  • Meena, L.S., Chopra, P., Bedwal, R.S., and Singh, Y. (2008). Cloning and characterization of a GTP binding protein from M. tuberculosis H37Rv. Enzyme Microb. Technol. 42, 138–144.Google Scholar

  • Meena, L.S., Dhakate, S.R., and Sahare, P.D. (2012). Elucidation of Mg2+ binding activity of adenylate kinase from Mycobacterium tuberculosis H37Rv using fluorescence studies. Biotechnol. Appl. Biochem. 59, 429–436.Web of ScienceGoogle Scholar

  • Nigou, J., Gilleron, M., Cahuzac, B., Bounery, J.D., Herold, M., Thurnher, M., and Puzo, G. (1997). The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette-Guerin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J. Biol. Chem. 272, 23094–23103.Google Scholar

  • Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G.S., Baulard, A.R., Slayden, R.A., DeBarber, A.E., Barry 3rd, C.E., Baird M.S., et al. (2003). Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J. Biol. Chem. 278, 53123–53130.Google Scholar

  • Takayama, K., Wang, C., and Besra, G.S. (2005). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18, 81–101.Google Scholar

  • Yuan, Y., Lee, R.E., Besra, G.S., Belisle, J.T., and Barry 3rd, C.E. (1995). Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 92, 6630–6634.Google Scholar

  • Yuan, Y., Mead, D., Schroeder, B.G., Zhu, Y., and Barry 3rd, C.E. (1998). The biosynthesis of mycolic acids in Mycobacterium tuberculosis. Enzymatic methyl(ene) transfer to acyl carrier protein bound meromycolic acid in vitro. J. Biol. Chem. 273, 21282–21290.Google Scholar

About the article

Corresponding author: Laxman S. Meena, CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi 110007, India


Received: 2013-01-23

Accepted: 2013-02-18

Published Online: 2013-02-21

Published in Print: 2013-07-01


Citation Information: Biological Chemistry, Volume 394, Issue 7, Pages 871–877, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0126.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
Phuong Chi Nguyen, Vincent Delorme, Anaïs Bénarouche, Benjamin P. Martin, Rishi Paudel, Giri R. Gnawali, Abdeldjalil Madani, Rémy Puppo, Valérie Landry, Laurent Kremer, Priscille Brodin, Christopher D. Spilling, Jean-François Cavalier, and Stéphane Canaan
Scientific Reports, 2017, Volume 7, Number 1
[4]
Adam Choma, Iwona Komaniecka, and Kamil Zebracki
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2017, Volume 1862, Number 2, Page 196
[5]
Monu and Laxman S. Meena
Applied Biochemistry and Biotechnology, 2016, Volume 178, Number 7, Page 1377
[6]
Laxman S. Meena and Jaishree Meena
Biotechnology and Applied Biochemistry, 2016, Volume 63, Number 4, Page 525
[7]
Damien Portevin, Sudarkodi Sukumar, Mireia Coscolla, Guanghou Shui, Bowen Li, Xue Li Guan, Anne K. Bendt, Douglas Young, Sebastien Gagneux, and Markus R. Wenk
MicrobiologyOpen, 2014, Volume 3, Number 6, Page 823

Comments (0)

Please log in or register to comment.
Log in