Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 394, Issue 7


When stable RNA becomes unstable: the degradation of ribosomes in bacteria and beyond

Ülo Maiväli / Anton Paier / Tanel Tenson
Published Online: 2013-03-24 | DOI: https://doi.org/10.1515/hsz-2013-0133


This review takes a comparative look at the various scenarios where ribosomes are degraded in bacteria and eukaryotes with emphasis on studies involving Escherichia coli and Saccharomyces cerevisiae. While the molecular mechanisms of degradation in bacteria and yeast appear somewhat different, we argue that the underlying causes of ribosome degradation are remarkably similar. In both model organisms during ribosomal assembly, partially formed pre-ribosomal particles can be degraded by at least two different sequentially-acting quality control pathways and fully assembled but functionally faulty ribosomes can be degraded in a separate quality control pathway. In addition, ribosomes that are both structurally- and functionally-sound can be degraded as an adaptive measure to stress.

Keywords: degradation; Escherichia coli; nonfunctional RNA decay (NRD); ribosome; yeast


  • Agafonov, D.E., Kolb, V.A., Nazimov, I.V., and Spirin, A.S. (1999). A protein residing at the subunit interface of the bacterial ribosome. Proc. Natl. Acad. Sci. USA 96, 12345–12349.CrossrefGoogle Scholar

  • Allas, U., Liiv, A., and Remme, J. (2003). Functional interaction between RNase III and the Escherichia coli ribosome. BMC Mol. Biol. 4, 8.PubMedCrossrefGoogle Scholar

  • Allmang, C., Mitchell, P., Petfalski, E., and Tollervey, D. (2000). Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res. 28, 1684–1691.CrossrefPubMedGoogle Scholar

  • Andersen, K.L., and Collins, K. (2011). Several RNase T2 enzymes function in induced tRNA and rRNA turnover in the ciliate Tetrahymena. Mol. Biol. Cell 23, 36–44.Google Scholar

  • Aronson, A.I. and McCarthy, B.J. (1961). Studies of E. coli ribosomal RNA and its degradation products. Biophys. J. 1, 215–226.Google Scholar

  • Ashford, A.J. and Pain, V.M. (1986). Effect of diabetes on the rates of synthesis and degradation of ribosomes in rat muscle and liver in vivo. J. Biol. Chem. 261, 4059–4065.Google Scholar

  • Ault-Riché, D., Fraley, C.D., Tzeng, C.M., and Kornberg, A. (1998). Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180, 1841–1847.Google Scholar

  • Basturea, G.N., Zundel, M.A., and Deutscher, M.P. (2011). Degradation of ribosomal RNA during starvation: comparison to quality control during steady-state growth and a role for RNase PH. RNA 17, 338–345.CrossrefGoogle Scholar

  • Basturea, G.N., Harris, T.K., and Deutscher, M.P. (2012). Growth of a bacterium that apparently uses arsenic instead of phosphorus is a consequence of massive ribosome breakdown. J. Biol. Chem. 287, 28816–28819.Google Scholar

  • Bessarab, D.A., Kaberdin, V.R., Wei, C.L., Liou, G.G., and Lin-Chao, S. (1998). RNA components of Escherichia coli degradosome: evidence for rRNA decay. Proc. Natl. Acad. Sci. USA 95, 3157–3161.CrossrefGoogle Scholar

  • Bremer, H. and Dennis, P.P. (1987). Modulation of chemical composition and other parameters of the cell by growth rate. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. (American Society for Microbiology, Washington, DC), pp. 1527–1542.Google Scholar

  • Cebollero, E., Reggiori, F., and Kraft, C. (2012). Reticulophagy and ribophagy: regulated degradation of protein production factories. Int. J. Cell Biol. 2012, 182834.PubMedGoogle Scholar

  • Chen, C. and Deutscher, M.P. (2005). Elevation of RNase R in response to multiple stress conditions. J. Biol. Chem. 280, 34393–34396.Google Scholar

  • Chen, C. and Deutscher, M.P. (2010). RNase R is a highly unstable protein regulated by growth phase and stress. RNA 16, 667–672.PubMedCrossrefGoogle Scholar

  • Cole, S.E., LaRiviere, F.J., Merrikh, C.N., and Moore, M.J. (2009). A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol. Cell 34, 440–450.CrossrefPubMedGoogle Scholar

  • Dalebroux, Z.D. and Swanson, M.S. (2012). ppGpp: magic beyond RNA polymerase. Nat. Rev. Microbiol. 10, 203–212.CrossrefPubMedGoogle Scholar

  • Davey, H.M., Cross, E.J.M., Davey, C.L., Gkargkas, K., Delneri, D., Hoyle, D.C., Oliver, S.G., Kell, D.B., and Griffith, G.W. (2012). Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ. Microbiol. 14, 1249–1260.CrossrefPubMedGoogle Scholar

  • Davies, B.W., Köhrer, C., Jacob, A.I., Simmons, L.A., Zhu, J., Aleman, L.M., RajBhandary, U.L., and Walker, G.C. (2010). Role of Escherichia coli YbeY, a highly conserved protein, in rRNA processing. Mol. Microbiol. 78, 506–518.PubMedCrossrefGoogle Scholar

  • Davis, B.D., Luger, S.M., and Tai, P.C. (1986). Role of ribosome degradation in the death of starved Escherichia coli cells. J. Bacteriol. 166, 439–445.Google Scholar

  • Deutscher, M.P. (2003). Degradation of stable RNA in bacteria. J. Biol. Chem. 278, 45041–45044.Google Scholar

  • Deutscher, M.P. (2006). Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res. 34, 659–666.PubMedCrossrefGoogle Scholar

  • Deutscher, M.P. (2009). Maturation and degradation of ribosomal RNA in bacteria. Prog. Mol. Biol. Transl. Sci. 85, 369–391.Google Scholar

  • Dewe, J.M., Whipple, J.M., Chernyakov, I., Jaramillo, L.N., and Phizicky, E.M. (2012). The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA 18, 1886–1896.CrossrefGoogle Scholar

  • Dez, C., Houseley, J., and Tollervey, D. (2006). Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO J. 25, 1534–1546.PubMedCrossrefGoogle Scholar

  • Ding, Q., Markesbery, W.R., Chen, Q., Li, F., and Keller, J.N. (2005). Ribosome dysfunction is an early event in Alzheimer’s disease. J. Neurosci. 25, 9171–9175.CrossrefGoogle Scholar

  • Dong, H., Nilsson, L., and Kurland, C.G. (1995). Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J. Bacteriol. 177, 1497–1504.Google Scholar

  • Ehrenberg, M., Bremer, H., and Dennis, P.P. (2013). Medium-dependent control of the bacterial growth rate. Biochimie 95, 643–658.PubMedCrossrefGoogle Scholar

  • El-Sharoud, W.M. (2004). Ribosome inactivation for preservation: concepts and reservations. Sci. Prog. 87, 137–152.Google Scholar

  • Frazier, A.D. and Champney, W.S. (2012). Impairment of ribosomal subunit synthesis in aminoglycoside-treated ribonuclease mutants of Escherichia coli. Arch. Microbiol. 194, 1033–1041.Google Scholar

  • Freed, E.F., Bleichert, F., Dutca, L.M., and Baserga, S.J. (2010). When ribosomes go bad: diseases of ribosome biogenesis. Mol. Biosyst. 6, 481–493.CrossrefPubMedGoogle Scholar

  • Fujii, K., Kitabatake, M., Sakata, T., Miyata, A., and Ohno, M. (2009). A role for ubiquitin in the clearance of nonfunctional rRNAs. Genes Dev. 23, 963–974.CrossrefPubMedGoogle Scholar

  • Fujii, K., Sakata, T., Kitabatake, M., and Ohno, M. (2012). 40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay. EMBO J. 31, 2579–2589.CrossrefGoogle Scholar

  • Gausing, K. (1977). Regulation of ribosome production in Escherichia coli: synthesis and stability of ribosomal RNA and of ribosomal protein messenger RNA at different growth rates. J. Mol. Biol. 115, 335–354.CrossrefGoogle Scholar

  • Gutgsell, N.S. and Jain, C. (2012). Role of precursor sequences in the ordered maturation of E. coli 23S ribosomal RNA. RNA 18, 345–353.CrossrefGoogle Scholar

  • Häuser, R., Pech, M., Kijek, J., Yamamoto, H., Titz, B., Naeve, F., Tovchigrechko, A., Yamamoto, K., Szaflarski, W., Takeuchi, N., et al. (2012). RsfA (YbeB) Proteins are conserved ribosomal silencing factors. PLOS Genet. 8, e1002815.CrossrefGoogle Scholar

  • Henras, A.K., Soudet, J., Gérus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., and Henry, Y. (2008). The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell. Mol. Life Sci. 65, 2334–2359.CrossrefPubMedGoogle Scholar

  • Hillwig, M.S., Contento, A.L., Meyer, A., Ebany, D., Bassham, D.C., and Macintosh, G.C. (2011). RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proc. Natl. Acad. Sci. USA 108, 1093–1098.CrossrefGoogle Scholar

  • Hoat, T.X., Nakayashiki, H., Tosa, Y., and Mayama, S. (2006). Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat. Plant J. 46, 922–933.PubMedCrossrefGoogle Scholar

  • Hsu, D., Shih, L.M., and Zee, Y.C. (1994). Degradation of rRNA in Salmonella strains: a novel mechanism to regulate the concentrations of rRNA and ribosomes. J. Bacteriol. 176, 4761–4765.Google Scholar

  • Jacob, A.I., Köhrer, C., Davies, B.W., RajBhandary, U.L., and Walker, G.C. (2013). Conserved bacterial RNase YbeY plays key roles in 70S ribosome quality control and 16S rRNA maturation. Mol. Cell 49, 427–438.CrossrefGoogle Scholar

  • Jia, J., Arif, A., Willard, B., Smith, J.D., Stuehr, D.J., Hazen, S.L., and Fox, P.L. (2012). Protection of extraribosomal RPL13a by GAPDH and dysregulation by S-nitrosylation. Mol. Cell 47, 656–663.Google Scholar

  • Johnson, R.M., Evans, J.D., Robinson, G.E., and Berenbaum, M.R. (2009). Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. USA 106, 14790–14795.CrossrefGoogle Scholar

  • Johnston, G.C., Singer, R.A., and McFarlane, S. (1977). Growth and cell division during nitrogen starvation of the yeast Saccharomyces cerevisiae. J. Bacteriol. 132, 723–730.Google Scholar

  • Ju, Q. and Warner, J.R. (1994). Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae. Yeast 10, 151–157.CrossrefPubMedGoogle Scholar

  • Kaczanowska, M. and Ryden-Aulin, M. (2007). Ribosome biogenesis and the translation process in Escherichia coli. Microbiol. Mol. Biol. Rev. 71, 477–494.CrossrefPubMedGoogle Scholar

  • Kalpaxis, D.L., Karahalios, P., and Papapetropoulou, M. (1998). Changes in ribosomal activity of Escherichia coli cells during prolonged culture in sea salts medium. J. Bacteriol. 180, 3114–3119.Google Scholar

  • Kaplan, R. and Apirion, D. (1975). The fate of ribosomes in Escherichia coli cells starved for a carbon source. J. Biol. Chem. 250, 1854–1863.Google Scholar

  • Karbstein, K. (2013). Quality control mechanisms during ribosome maturation. Trends Cell Biol., in press. DOI 10.1016/j.tcb.2013.01.004.CrossrefGoogle Scholar

  • King, K.L., Jewell, C.M., Bortner, C.D., and Cidlowski, J.A. (2000). 28S ribosome degradation in lymphoid cell apoptosis: evidence for caspase and Bcl-2-dependent and -independent pathways. Cell Death Differ. 7, 994–1001.CrossrefGoogle Scholar

  • Kitahara, K. and Miyazaki, K. (2011). Specific inhibition of bacterial RNase T2 by helix 41 of 16S ribosomal RNA. Nat. Commun. 2, 549–547.CrossrefGoogle Scholar

  • Kraft, C., Deplazes, A., Sohrmann, M., and Peter, M. (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10, 602–610.Google Scholar

  • Krokowski, D., Gaccioli, F., Majumder, M., Mullins, M.R., Yuan, C.L., Papadopoulou, B., Merrick, W.C., Komar, A.A., Taylor, D.J., and Hatzoglou, M. (2011). Characterization of hibernating ribosomes in mammalian cells. Cell Cycle 10, 2691–2702.PubMedCrossrefGoogle Scholar

  • Kuroda, A., Murphy, H., Cashel, M., and Kornberg, A. (1997). Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J. Biol. Chem. 272, 21240–21243.Google Scholar

  • Kuroda, A., Tanaka, S., Ikeda, T., Kato, J., Takiguchi, N., and Ohtake, H. (1999). Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 14264–14269.CrossrefGoogle Scholar

  • Kuroda, A., Nomura, K., Ohtomo, R., Kato, J., Ikeda, T., Takiguchi, N., Ohtake, H., and Kornberg, A. (2001). Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293, 705–708.Google Scholar

  • Lafontaine, D.L.J. (2010). A ‘garbage can’ for ribosomes: how eukaryotes degrade their ribosomes. Trends Biochem. Sci. 35, 267–277.PubMedCrossrefGoogle Scholar

  • LaRiviere, F.J., Cole, S.E., Ferullo, D.J., and Moore, M.J. (2006). A late-acting quality control process for mature eukaryotic rRNAs. Mol. Cell 24, 619–626.CrossrefPubMedGoogle Scholar

  • Lebaron, S., Schneider, C., van Nues, R.W., Swiatkowska, A., Walsh, D., Böttcher, B., Granneman, S., Watkins, N.J., and Tollervey, D. (2012). Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat. Struct. Mol. Biol. 19, 744–753.CrossrefGoogle Scholar

  • Li, Z., Reimers, S., Pandit, S., and Deutscher, M.P. (2002). RNA quality control: degradation of defective transfer RNA. EMBO J. 21, 1132–1138.CrossrefPubMedGoogle Scholar

  • Liang, W. and Deutscher, M.P. (2011). Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ). RNA 18, 37–41.PubMedCrossrefGoogle Scholar

  • Liang, W. and Deutscher, M.P. (2012a). Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ). RNA 18, 37–41.PubMedCrossrefGoogle Scholar

  • Liang, W. and Deutscher, M.P. (2012b). Transfer-messenger RNA-SmpB protein regulates ribonuclease R turnover by promoting binding of HslUV and lon proteases. J. Biol. Chem. 287, 33472–33479.Google Scholar

  • Liu, M., Gong, X., Alluri, R.K., Wu, J., Sablo, T., and Li, Z. (2012). Characterization of RNA damage under oxidative stress in Escherichia coli. Biol. Chem. 393, 123–132.Google Scholar

  • MacIntosh, G.C. (2011). RNase T2 family: enzymatic properties, functional diversity, and evolution of ancient ribonucleases. In: Ribonucleases, Nucleic Acids and Molecular Biology 26, A.W. Nicholson, ed. (Springer-Verlag), pp. 89–114.Google Scholar

  • Maes, A., Gracia, C., Hajnsdorf, E., and Régnier, P. (2011). Search for poly(A) polymerase targets in E. coli reveals its implication in surveillance of Glu tRNA processing and degradation of stable RNAs. Mol. Microbiol. 83, 436–451.Google Scholar

  • Metodiev, M.D., Lesko, N., Park, C.B., Amara, Y., Shi, Y., Wibom, R., Hultenby, K., Gustafsson, C.M., and Larsson, N.-G. (2009). Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab. 9, 386–397.CrossrefGoogle Scholar

  • Molin, S., Von Meyenburg, K., Maaloe, O., Hansen, M.T., and Pato, M.L. (1977). Control of ribosome synthesis in Escherichia coli: analysis of an energy source shift-down. J. Bacteriol. 131, 7–17.Google Scholar

  • Moll, I. and Engelberg-Kulka, H. (2012). Selective translation during stress in Escherichia coli. Trends Biochem. Sci. 37, 493–498.CrossrefGoogle Scholar

  • Mroczek, S. and Kufel, J. (2008). Apoptotic signals induce specific degradation of ribosomal RNA in yeast. Nucleic Acids Res. 36, 2874–2888.PubMedCrossrefGoogle Scholar

  • Nanamiya, H., Akanuma, G., Natori, Y., Murayama, R., Kosono, S., Kudo, T., Kobayashi, K., Ogasawara, N., Park, S.-M., Ochi, K., et al. (2004). Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol. Microbiol. 52, 273–283.Google Scholar

  • Narla, A. and Ebert, B.L. (2010). Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205.CrossrefPubMedGoogle Scholar

  • Nierhaus, K.H. and Dohme, F. (1974). Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 4713–4717.CrossrefGoogle Scholar

  • Nunomura, A., Moreira, P.I., Castellani, R.J., Lee, H.-G., Zhu, X., Smith, M.A., and Perry, G. (2012). Oxidative damage to RNA in aging and neurodegenerative disorders. Neurotox. Res. 22, 231–248.PubMedCrossrefGoogle Scholar

  • Nusspaumer, G., Remacha, M., and Ballesta, J.P. (2000). Phosphorylation and N-terminal region of yeast ribosomal protein P1 mediate its degradation, which is prevented by protein P2. EMBO J. 19, 6075–6084.CrossrefGoogle Scholar

  • Ougland, R., Zhang, C.-M., Liiv, A., Johansen, R.F., Seeberg, E., Hou, Y.-M., Remme, J., and Falnes, P.Ø. (2004). AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol. Cell 16, 107–116.CrossrefPubMedGoogle Scholar

  • Panse, V.G. and Johnson, A.W. (2010). Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem. Sci. 35, 260–266.PubMedCrossrefGoogle Scholar

  • Pestov, D.G. and Shcherbik, N. (2012). Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR. Mol. Cell. Biol. 32, 2135–2144.PubMedCrossrefGoogle Scholar

  • Piir, K., Paier, A., Liiv, A., Tenson, T., and Maivali, U. (2011). Ribosome degradation in growing bacteria. EMBO Rep. 12, 458–462.CrossrefPubMedGoogle Scholar

  • Polikanov, Y.S., Blaha, G.M., and Steitz, T.A. (2012). How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336, 915–918.CrossrefPubMedGoogle Scholar

  • Pulk, A., Liiv, A., Peil, L., Maivali, U., Nierhaus, K., and Remme, J. (2010). Ribosome reactivation by replacement of damaged proteins. Mol. Microbiol. 75, 801–814.Google Scholar

  • Ramagopal, S. and Subramanian, A.R. (1974). Alteration in the acetylation level of ribosomal protein L12 during growth cycle of Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 2136–2140.CrossrefGoogle Scholar

  • Scott, M., Gunderson, C.W., Mateescu, E.M., Zhang, Z., and Hwa, T. (2010). Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102.Google Scholar

  • Shajani, Z., Sykes, M.T., and Williamson, J.R. (2011). Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80, 501–526.Google Scholar

  • Shcherbik, N. and Pestov, D.G. (2011). The ubiquitin ligase Rsp5 is required for ribosome stability in Saccharomyces cerevisiae. RNA 17, 1422–1428.CrossrefGoogle Scholar

  • Silvers, J.A. and Champney, W.S. (2005). Accumulation and turnover of 23S ribosomal RNA in azithromycin-inhibited ribonuclease mutant strains of Escherichia coli. Arch. Microbiol. 184, 66–77.Google Scholar

  • Slomovic, S., Fremder, E., Staals, R.H.G., Pruijn, G.J.M., and Schuster, G. (2010). Addition of poly(A) and poly(A)-rich tails during RNA degradation in the cytoplasm of human cells. Proc. Natl. Acad. Sci. USA 107, 7407–7412.CrossrefGoogle Scholar

  • Strunk, B.S., Novak, M.N., Young, C.L., and Karbstein, K. (2012). A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150, 111–121.CrossrefGoogle Scholar

  • Thompson, D.M. and Parker, R. (2009). Stressing out over tRNA cleavage. Cell 138, 215–219.PubMedCrossrefGoogle Scholar

  • Tsai, Y.C., Du, D., Dominguez-Malfavon, L., Dimastrogiovanni, D., Cross, J., Callaghan, A.J., Garcia-Mena, J., and Luisi, B.F. (2012). Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Res. 40, 10417–10431.CrossrefGoogle Scholar

  • Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I., and Inada, T. (2012). Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol. Cell 46, 518–529.Google Scholar

  • Van Dyke, N., Chanchorn, E., and Van Dyke, M.W. (2013). The Saccharomyces cerevisiae protein Stm1p facilitates ribosome preservation during quiescence. Biochem. Biophys. Res. Com. 430, 745–750.Google Scholar

  • Vesper, O., Amitai, S., Belitsky, M., Byrgazov, K., Kaberdina, A.C., Engelberg-Kulka, H., and Moll, I. (2011). Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147–157.PubMedCrossrefGoogle Scholar

  • Wada, A. (1998). Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells 3, 203–208.CrossrefGoogle Scholar

  • Wada, A., Mikkola, R., Kurland, C.G., and Ishihama, A. (2000). Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of Escherichia coli. J. Bacteriol. 182, 2893–2899.Google Scholar

  • Warner, J.R. (1999). The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440.PubMedCrossrefGoogle Scholar

  • Wilusz, J.E., Whipple, J.M., Phizicky, E.M., and Sharp, P.A. (2011). tRNAs marked with CCACCA are targeted for degradation. Science 334, 817–821.Google Scholar

  • Wu, J. and Li, Z. (2008). Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem. Biophys. Res. Commun. 372, 288–292.Google Scholar

  • Wu, J., Jiang, Z., Liu, M., Gong, X., Wu, S., Burns, C.M., and Li, Z. (2009). Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry 48, 2012–2020.CrossrefPubMedGoogle Scholar

  • Yoshida, H., Maki, Y., Furuike, S., Sakai, A., Ueta, M., and Wada, A. (2012). YqjD is an inner membrane protein associated with stationary-phase ribosomes in Escherichia coli. J. Bacteriol. 194, 4178–4183.Google Scholar

  • Zhou, Z. and Deutscher, M.P. (1997). An essential function for the phosphate-dependent exoribonucleases RNase PH and polynucleotide phosphorylase. J. Bacteriol. 179, 4391–4395.Google Scholar

  • Zundel, M.A., Basturea, G.N., and Deutscher, M.P. (2009). Initiation of ribosome degradation during starvation in Escherichia coli. RNA 15, 977–983.CrossrefPubMedGoogle Scholar

About the article

Ülo Maiväli

Ülo Maiväli is a molecular biologist studying ribosomal metabolism in Escherichia coli. He obtained his PhD from the University of Tartu in 2004. Currently he is a researcher in the Institute of Technology, University of Tartu, Estonia.

Anton Paier

Anton Paier has a Master’s degree in Modern Literature from the University of Genua, Italy, a Bachelor’s in Military History from the University of Stockholm and a Master’s in Biomedical Laboratory Sciences from the Karolinska Institute (2008). Currently he is doing a PhD in Molecular Biology at the University of Tartu. His thesis is centered on the ribosomal degradation in E. coli.

Tanel Tenson

Tanel Tenson is a biochemist and microbiologist studying the mechanisms of antibiotic action and antibiotic resistance. He obtained his PhD from the University of Tartu in 1997. Tanel Tenson is currently Professor of Technology of Antimicrobial Compounds at the Institute of Technology, University of Tartu.

Corresponding author: Ülo Maiväli, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia

Received: 2013-02-07

Accepted: 2013-03-20

Published Online: 2013-03-24

Published in Print: 2013-07-01

Citation Information: Biological Chemistry, Volume 394, Issue 7, Pages 845–855, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0133.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Christopher J. Kiely, Paul Pavli, and Claire L. O'Brien
Internal Medicine Journal, 2018, Volume 48, Number 11, Page 1346
Blaire Steven, Cedar Hesse, John Soghigian, La Verne Gallegos-Graves, John Dunbar, and Frank E. Löffler
Applied and Environmental Microbiology, 2017, Volume 83, Number 11
Shilpa J. Rao, Ekta Shukla, Varsha Bhatia, Bharat Lohiya, Sushama M. Gaikwad, Anita Kar, and Jayanta K. Pal
International Journal of Biological Macromolecules, 2018
Bani K. Pathak, Senjuti Banerjee, Surojit Mondal, Biprashekhar Chakraborty, Jayati Sengupta, and Chandana Barat
The FEBS Journal, 2017
Stephen A. Bell, Chi Shen, Alishea Brown, Arthur G. Hunt, and James G. Umen
PLOS ONE, 2016, Volume 11, Number 1, Page e0146107
Toomas Mets, Markus Lippus, David Schryer, Aivar Liiv, Villu Kasari, Anton Paier, Ülo Maiväli, Jaanus Remme, Tanel Tenson, and Niilo Kaldalu
RNA Biology, 2017, Volume 14, Number 1, Page 124
Tom Dendooven, An Van den Bossche, Hanne Hendrix, Pieter-Jan Ceyssens, Marleen Voet, K. J. Bandyra, Marc De Maeyer, Abram Aertsen, Jean-Paul Noben, Steven W. Hardwick, Ben F. Luisi, and Rob Lavigne
RNA Biology, 2017, Volume 14, Number 1, Page 6
Anton Paier, Margus Leppik, Aksel Soosaar, Tanel Tenson, and Ülo Maiväli
Scientific Reports, 2015, Volume 5, Number 1

Comments (0)

Please log in or register to comment.
Log in