Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 394, Issue 9

Issues

Overexpression of miR-126 promotes the differentiation of mesenchymal stem cells toward endothelial cells via activation of PI3K/Akt and MAPK/ERK pathways and release of paracrine factors

Feng Huang
  • Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhen-fei Fang
  • Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xin-qun Hu
  • Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liang Tang
  • Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sheng-hua Zhou
  • Corresponding author
  • Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jian-ping Huang
Published Online: 2013-05-29 | DOI: https://doi.org/10.1515/hsz-2013-0107

Abstract

The endothelial cell (EC)-specific miRNA, miR-126, is known to promote angiogenesis in response to angiogenic factors by repressing negative regulators of signal transduction pathways; however, whether miR-126 might regulate the differentiation of stem cells toward endothelial lineage remains unknown. To answer this question, in this study mesenchymal stem cells (MSCs) harvested from C57BL/6 mouse bone marrow were transfected with miR-126 (MSCmiR-126) using recombinant lentiviral vectors. Results showed the para-secretion and the expression levels of phosphorylated PI3K p85, Akt, p38, ERK1 protein in the MSCmiR-126 group were dramatically increased when compared with the control group. With half culture medium refreshed every 3 days, a small number of 6-day-cultured MSCmiR-126 differentiated into endothelial-like cells and most of 9-day-cultured MSCmiR-126 formed a cobblestone-like structure. These differentiated cells evidently expressed EC-specific makers and possessed mature ECs function, while inhibition of paracrine factors suppressed the MSC-EC differentiation. Strikingly, the increased secretion of MSCmiR-126 and their endothelial-differentiated potential were deprived by using a PI3K or MEK chemical inhibitor. Our results suggest that overexpression of miR-126 agumenting the endothelial differentiation of MSCs might in part be attributable to the activation of PI3K/Akt and MAPK/ERK pathways and an increased release of paracrine factors.

Keywords: differentiation; endothelial cells; mesenchymal stem cells; miR-126; para-secretion; signaling pathway

References

  • Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.Web of ScienceGoogle Scholar

  • Chen, J.J. and Zhou, S.H. (2011). Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol. J. 18, 675–681.Web of ScienceGoogle Scholar

  • Dimmeler, S., Aicher, A., Vasa, M., Mildner-Rihm, C., Adler, K., Tiemann, M., Rutten, H., Fichtlscherer, S., Martin, H., and Zeiher, A.M. (2001). HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest. 108, 391–397.Google Scholar

  • Evseenko, D., Zhu, Y., Schenke-Layland, K., Kuo, J., Latour, B., Ge, S., Scholes, J., Dravid, G., Li, X., MacLellan, W.R., et al. (2010). Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 107, 13742–13747.CrossrefWeb of ScienceGoogle Scholar

  • Fish, J.E., Santoro, M.M., Morton, S.U., Yu, S., Yeh, R.F., Wythe, J.D., Ivey, K.N., Bruneau, B.G., Stainier, D.Y., and Srivastava, D. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284.Google Scholar

  • Gnecchi, M., He, H., Noiseux, N., Liang, O.D., Zhang, L., Morello, F., Mu, H., Melo, L.G., Pratt, R.E., Ingwall, J.S., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661–669.CrossrefPubMedGoogle Scholar

  • Gnecchi, M., Zhang, Z., Ni, A., and Dzau, V.J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103, 1204–1219.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027.Google Scholar

  • He, L. and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531.PubMedCrossrefGoogle Scholar

  • Ivey, K.N., Muth, A., Arnold, J., King, F.W., Yeh, R.F., Fish, J.E., Hsiao, E.C., Schwartz, R.J., Conklin, B.R., Bernstein, H.S., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219–229.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Kane, N.M., Meloni, M., Spencer, H.L., Craig, M.A., Strehl, R., Milligan, G., Houslay, M.D., Mountford, J.C., Emanueli, C., and Baker, A.H. (2010). Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 30, 1389–1397.CrossrefPubMedGoogle Scholar

  • Kane, N.M., Howard, L., Descamps, B., Meloni, M., McClure, J., Lu, R., McCahill, A., Breen, C., Mackenzie, R.M., Delles, C., et al. (2012). Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells 30, 643–654.Web of ScienceGoogle Scholar

  • Kinnaird, T., Stabile, E., Burnett, M.S., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678–685.PubMedCrossrefGoogle Scholar

  • Krampera, M., Pasini, A., Rigo, A., Scupoli, M.T., Tecchio, C., Malpeli, G., Scarpa, A., Dazzi, F., Pizzolo, G., and Vinante, F. (2005). HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood 106, 59–66.Google Scholar

  • Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.Google Scholar

  • Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060.CrossrefPubMedGoogle Scholar

  • Li, H., Zuo, S., He, Z., Yang, Y., Pasha, Z., Wang, Y., and Xu, M. (2010). Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am. J. Physiol. Heart Circ. Physiol. 299, H1772–1781.Web of ScienceGoogle Scholar

  • Lim, S.Y., Kim, Y.S., Ahn, Y., Jeong, M.H., Hong, M.H., Joo, S.Y., Nam, K.I., Cho, J.G., Kang, P.M., and Park, J.C. (2006). The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc. Res. 70, 530–542.CrossrefGoogle Scholar

  • Ohtani, K. and Dimmeler, S. (2011). Control of cardiovascular differentiation by microRNAs. Basic Res. Cardiol. 106, 5–11.Web of SciencePubMedCrossrefGoogle Scholar

  • Small, E.M. and Olson, E.N. (2011). Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342.Web of ScienceGoogle Scholar

  • Takaya, T., Ono, K., Kawamura, T., Takanabe, R., Kaichi, S., Morimoto, T., Wada, H., Kita, T., Shimatsu, A., and Hasegawa, K. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ. J. 73, 1492–1497.Web of ScienceGoogle Scholar

  • Tiscornia, G. and Izpisua Belmonte, J.C. (2010). MicroRNAs in embryonic stem cell function and fate. Genes Dev. 24, 2732–2741.Web of ScienceCrossrefGoogle Scholar

  • Urbich, C., Aicher, A., Heeschen, C., Dernbach, E., Hofmann, W.K., Zeiher, A.M., and Dimmeler, S. (2005). Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol. 39, 733–742.CrossrefGoogle Scholar

  • Urbich, C., Kuehbacher, A., and Dimmeler, S. (2008). Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc. Res. 79, 581–588.CrossrefPubMedGoogle Scholar

  • Wang, S., Aurora, A.B., Johnson, B.A., Qi, X., McAnally, J., Hill, J.A., Richardson, J.A., Bassel-Duby, R., and Olson, E.N. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271.Google Scholar

  • Wang, H., Cao, F., De, A., Cao, Y., Contag, C., Gambhir, S.S., Wu, J.C., and Chen, X. (2009). Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 27, 1548–1558.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Wu, F., Yang, Z., and Li, G. (2009). Role of specific microRNAs for endothelial function and angiogenesis. Biochem. Biophys. Res. Commun. 386, 549–553.Web of ScienceGoogle Scholar

  • Xu, J., Liu, X., Jiang, Y., Chu, L., Hao, H., Liua, Z., Verfaillie, C., Zweier, J., Gupta, K., and Liu, Z. (2008). MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. J. Cell. Mol. Med. 12, 2395–2406.CrossrefWeb of ScienceGoogle Scholar

  • Zou, J., Li, W.Q., Li, Q., Li, X.Q., Zhang, J.T., Liu, G.Q., Chen, J., Qiu, X.X., Tian, F.J., Wang, Z.Z., et al. (2011). Two functional microRNA-126s repress a novel target gene p21-activated kinase 1 to regulate vascular integrity in zebrafish. Circ. Res. 108, 201–209.Web of ScienceGoogle Scholar

About the article

Corresponding authors: Sheng-hua Zhou, Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; and Jian-ping Huang, Alibaba Business College, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China


Received: 2013-01-11

Accepted: 2013-05-21

Published Online: 2013-05-29

Published in Print: 2013-09-01


Citation Information: Biological Chemistry, Volume 394, Issue 9, Pages 1223–1233, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0107.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Qunwen Pan, Yan Wang, Qing Lan, Weiquan Wu, Zhenxuan Li, Xiaotang Ma, and Liming Yu
Stem Cells International, 2019, Volume 2019, Page 1
[2]
Adam Nowakowski, Piotr Walczak, Miroslaw Janowski, and Barbara Lukomska
Stem Cells and Development, 2015, Volume 24, Number 19, Page 2219
[5]
Zizhao Wu, Xianjian Qiu, Bo Gao, Chengjie Lian, Yan Peng, Anjing Liang, Caixia Xu, Wenjie Gao, Liangming Zhang, Peiqiang Su, Limin Rong, and Dongsheng Huang
Journal of Pineal Research, 2018, Page e12483
[6]
Hui wang, Xie-Gang Ding, Jin-Jian Yang, Shi-wen Li, Hang Zheng, Chao-Hui Gu, Zhan-Kui Jia, and Lu Li
European Journal of Cell Biology, 2018
[7]
Luai Huleihel, Jacobo Sellares, Nayra Cardenes, Diana Álvarez, Rosa Faner, Koji Sakamoto, Guoying Yu, Maria G. Kapetanaki, Naftali Kaminski, and Mauricio Rojas
American Journal of Physiology-Lung Cellular and Molecular Physiology, 2017, Volume 313, Number 1, Page L92
[8]
Pan Dan, Émilie Velot, Véronique Decot, and Patrick Menu
Journal of Cell Science, 2015, Volume 128, Number 14, Page 2415
[9]
L. L. Zhu, X. Huang, W. Yu, H. Chen, Y. Chen, and Y. T. Dai
Andrologia, 2017, Page e12871
[10]
Yu Di, Yiou Zhang, Linping Hui, Hongwei Yang, Yang Yang, Aiyuan Wang, and Xiaolong Chen
Molecular Medicine Reports, 2016, Volume 14, Number 5, Page 4321
[11]
[12]
Aysa Rezabakhsh, Omid Cheraghi, Alireza Nourazarian, Mehdi Hassanpour, Masoumeh Kazemi, Shahrooz Ghaderi, Esmaeil Faraji, Reza Rahbarghazi, Çığır Biray Avci, Bakiye Goker Bagca, and Alireza Garjani
Journal of Cellular Biochemistry, 2017, Volume 118, Number 6, Page 1518
[13]
Wen-Zhi Yang, Jin Yang, Li-Ping Xue, Li-Bo Xiao, and Yan Li
Journal of Diabetes and its Complications, 2017, Volume 31, Number 4, Page 653
[14]
Junnan Wang, Yongliang Li, Longyue Gao, Siqi Wang, Aofei Mao, and Bin Liu
Optik - International Journal for Light and Electron Optics, 2017, Volume 128, Page 247
[15]
Lei Song, Dan Li, Yue Gu, Zhong-Mei Wen, Jing Jie, Dan Zhao, and Li-Ping Peng
Clinical Lung Cancer, 2016, Volume 17, Number 5, Page e65
[16]
Sang-Ging Ong, Won Hee Lee, Kazuki Kodo, and Joseph C. Wu
Advanced Drug Delivery Reviews, 2015, Volume 88, Page 3
[17]
Woori Kim, Haneul Noh, Yenarae Lee, Jeha Jeon, Arthi Shanmugavadivu, Donna L. McPhie, Kwang-Soo Kim, Bruce M. Cohen, Hyemyung Seo, and Kai C. Sonntag
Molecular Neurobiology, 2016, Volume 53, Number 1, Page 95
[18]
Yan Zhou, Hai-yan Hu, Wei Meng, Ling Jiang, Xing Zhang, Jing-jing Sha, Zhigang Lu, and Yang Yao
Tumor Biology, 2014, Volume 35, Number 9, Page 9269
[19]
Elizabeth A. Clark, Stefanos Kalomoiris, Jan A. Nolta, and Fernando A. Fierro
STEM CELLS, 2014, Volume 32, Number 5, Page 1074
[20]
Xinghui Sun, Nathan Belkin, and Mark W. Feinberg
Current Atherosclerosis Reports, 2013, Volume 15, Number 12
[21]
Luai Huleihel, Melanie Levine, and Mauricio Rojas
Expert Opinion on Biological Therapy, 2013, Volume 13, Number 10, Page 1429

Comments (0)

Please log in or register to comment.
Log in