Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 394, Issue 9

Issues

Interleukin-6 and interleukin-11: same same but different

Christoph Garbers
  • Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgen Scheller
  • Corresponding author
  • Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-04 | DOI: https://doi.org/10.1515/hsz-2013-0166

Abstract

The pleiotropic physiological functions of interleukin (IL-)6 type cytokines range from embryonic development and tissue homoeostasis to neuronal development and T cell differentiation. In contrast, imbalance of the well-controlled cytokine signaling network leads to chronic inflammatory diseases and cancer. IL-6 and IL-11 both signal through a homodimer of the ubiquitously expressed β-receptor glycoprotein 130 (gp130). Specificity is gained through an individual IL-6/IL-11 α-receptor, which does not directly participate in signal transduction, although the initial cytokine binding event to the α-receptor leads to the final complex formation with the β-receptors. Both cytokines activate the same downstream signaling pathways, which are predominantly the mitogen-activated protein kinase (MAPK)-cascade and the Janus kinase/signal transducer and activator of transcription (Jak/STAT) pathway. However, recent studies have highlighted divergent roles of the two related cytokines. Here, we will discuss how the biochemical similarities are translated into unique and non-redundant functions of IL-6 and IL-11 in vivo and illustrate strategies for cytokine-specific therapeutic intervention.

Keywords: gp130; IL-11 receptor; IL-6 receptor; interleukin 11; interleukin 6; STAT3

References

  • Adam, N., Rabe, B., Suthaus, J., Grötzinger, J., Rose-John, S., and Scheller, J. (2009). Unraveling viral interleukin 6 binding to gp130 and activation of STAT-signaling pathways independent of interleukin 6-receptor. J. Virol. 83, 5117–5126.Google Scholar

  • Aitsebaomo, J., Srivastava, S., Zhang, H., Jha, S., Wang, Z., Winnik, S., Veleva, A., Pi, X., Lockyer, P., Faber, J., et al. (2011). Recombinant human interleukin-11 treatment enhances collateral vessel growth after femoral artery ligation. Arterioscler. Thromb. Vasc. Biol. 31, 306–312.CrossrefGoogle Scholar

  • Ammit, A.J., Moir, L.M., Oliver, B.G., Hughes, J.M., Alkhouri, H., Ge, Q., Burgess, J.K., Black, J.L., and Roth, M. (2007). Effect of IL-6 trans-signaling on the pro-remodeling phenotype of airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 292, 199–206.Google Scholar

  • Atreya, R., Mudter, J., Finotto, S., Müllberg, J., Jostock, T., Wirtz, S., Schütz, M., Bartsch, B., Holtmann, M., Becker, C., et al. (2000). Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583–588.PubMedGoogle Scholar

  • Bazan, J.F. (1989). A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor β-chain. Biochem. Biophys. Res. Commun. 164, 788–795.Google Scholar

  • Bazan, J.F. (1990). Haemopoietic receptors and helical cytokines. Immunol. Today 11, 350–354.PubMedCrossrefGoogle Scholar

  • Becker, C., Fantini, M.C., Schramm, C., Lehr, H.A., Wirtz, S., Nikolaev, A., Burg, J., Strand, S., Kiesslich, R., Huber, S., et al. (2004). TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501.CrossrefGoogle Scholar

  • Becker, C., Fantini, M.C., Wirtz, S., Nikolaev, A., Lehr, H.A., Galle, P.R., Rose-John, S., and Neurath, M.F. (2005). IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4, 217–220.Google Scholar

  • Benigni, F., Fantuzzi, G., Sacco, S., Sironi, M., Pozzi, P., Dinarello, C.A., Sipe, J.D., Poli, V., Cappelletti, M., Paonessa, G., et al. (1996). Six different cytokines that share GP130 as a receptor subunit, induce serum amyloid A and potentiate the induction of interleukin-6 and the activation of the hypothalamus-pituitary-adrenal axis by interleukin-1. Blood 87, 1851–1854.Google Scholar

  • Boulanger, M.J., Bankovich, A.J., Kortemme, T., Baker, D., and Garcia, K.C. (2003). Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol. Cell 12, 577–589.CrossrefGoogle Scholar

  • Briso, E.M., Dienz, O., and Rincon, M. (2008). Cutting edge: soluble IL-6R is produced by IL-6R ectodomain shedding in activated CD4 T cells. J. Immunol. 180, 7102–7106.Google Scholar

  • Broide, D.H., Lotz, M., Cuomo, A.J., Coburn, D.A., Federman, E.C., and Wasserman, S.I. (1992). Cytokines in symptomatic asthma airways. J. Allergy Clin. Immunol. 89, 958–967.CrossrefGoogle Scholar

  • Brown, M.A., Pile, K.D., Kennedy, L.G., Calin, A., Darke, C., Bell, J., Wordsworth, B.P., and Cornélis, F. (1996). HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann. Rheum. Dis. 55, 268–277.CrossrefGoogle Scholar

  • Calon, A., Espinet, E., Palomo-Ponce, S., Tauriello, D., Iglesias, M., Céspedes, M., Sevillano, M., Nadal, C., Jung, P., Zhang, X., et al. (2012). Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584.PubMedCrossrefGoogle Scholar

  • Camporeale, A., Marino, F., Papageorgiou, A., Carai, P., Fornero, S., Fletcher, S., Page, B.D., Gunning, P., Forni, M., Chiarle, R., et al. (2013). STAT3 activity is necessary and sufficient for the development of immune-mediated myocarditis in mice and promotes progression to dilated cardiomyopathy. EMBO Mol. Med. 5, 572–590.CrossrefGoogle Scholar

  • Chalaris, A., Garbers, C., Rabe, B., Rose-John, S., and Scheller, J. (2011). The soluble Interleukin 6 receptor: generation and role in inflammation and cancer. Eur. J. Cell Biol. 90, 484–494.CrossrefGoogle Scholar

  • Chow, D., He, X., Snow, A.L., Rose-John, S., and Garcia, K.C. (2001). Structure of an extracellular gp130 cytokine receptor signaling complex. Science 291, 2150–2155.Google Scholar

  • Coles, B., Fielding, C.A., Rose-John, S., Scheller, J., Jones, S.A., and O’Donnell, V.B. (2007). Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension, cardiac signal transducer and activator of transcription-3 activation, and vascular hypertrophy in vivo. Am. J. Pathol. 171, 315–325.Google Scholar

  • Collaboration, I. R. G. C. E. R. F. (2012). Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213.Google Scholar

  • Collison, L.W., Delgoffe, G.M., Guy, C.S., Vignali, K.M., Chaturvedi, V., Fairweather, D., Satoskar, A.R., Garcia, K.C., Hunter, C.A., Drake, C.G., et al. (2012). The composition and signaling of the IL-35 receptor are unconventional. Nat. Immunol. 13, 290–299.CrossrefGoogle Scholar

  • Consortium, T. I.-R. M. R. A. I. R. M. (2012). The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224.Google Scholar

  • Curtis, D.J., Hilton, D.J., Roberts, B., Murray, L., Nicola, N., and Begley, C.G. (1997). Recombinant soluble interleukin-11 (IL-11) receptor α-chain can act as an IL-11 antagonist. Blood 90, 4403–4412.Google Scholar

  • Dawn, B., Xuan, Y.T., Guo, Y., Rezazadeh, A., Stein, A.B., Hunt, G., Wu, W.J., Tan, W., and Bolli, R. (2004). IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovas. Res. 64, 61–71.CrossrefGoogle Scholar

  • De Benedetti, F., Alonzi, T., Moretta, A., Lazzaro, D., Costa, P., Poli, V., Martini, A., Ciliberto, G., and Fattori, E. (1997). Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Invest. 99, 643–650.Google Scholar

  • De Benedetti, F., Rucci, N., Del Fattore, A., Peruzzi, B., Paro, R., Longo, M., Vivarelli, M., Muratori, F., Berni, S., Ballanti, P., et al. (2006). Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 54, 3551–3563.CrossrefGoogle Scholar

  • DiCosmo, B.F., Geba, G.P., Picarella, D., Elias, J.A., Rankin, J.A., Stripp, B.R., Whitsett, J. A., and Flavell, R.A. (1994). Airway epithelial cell expression of interleukin-6 in transgenic mice. Uncoupling of airway inflammation and bronchial hyperreactivity. J. Clin. Invest. 94, 2028–2035.CrossrefGoogle Scholar

  • Doganci, A., Eigenbrod, T., Krug, N., De Sanctis, G.T., Hausding, M., Erpenbeck, V.J., Haddad, E.-B., Lehr, H.A., Schmitt, E., Bopp, T., et al. (2005a). The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J. Clin. Invest. 115, 313–325.Google Scholar

  • Doganci, A., Sauer, K., Karwot, R., and Finotto, S. (2005b). Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin. Rev. Allergy Immunol. 28, 257–270.CrossrefGoogle Scholar

  • Du, X. and Williams, D. (1997). Interleukin-11: review of molecular, cell biology, and clinical use. Blood 89, 3897–3908.Google Scholar

  • Eckmann, L. (2006). Animal models of inflammatory bowel disease: lessons from enteric infections. Ann. N. Y. Acad. Sci. 1072, 28–38.Google Scholar

  • Einarsson, O., Geba, G., Zhu, Z., Landry, M., and Elias, J. (1996). Interleukin-11: stimulation in vivo and in vitro by respiratory viruses and induction of airways hyperresponsiveness. J. Clin. Invest. 97, 915–924.CrossrefGoogle Scholar

  • Elias, J., Zheng, T., Einarsson, O., Landry, M., Trow, T., Rebert, N., and Panuska, J. (1994a). Epithelial interleukin-11. Regulation by cytokines, respiratory syncytial virus, and retinoic acid. J. Biol. Chem. 269, 22261–22268.Google Scholar

  • Elias, J., Zheng, T., Whiting, N., Trow, T., Merrill, W., Zitnik, R., Ray, P., and Alderman, E. (1994b). IL-1 and transforming growth factor-beta regulation of fibroblast-derived IL-11. J. Immunol. 152, 2421–2429.Google Scholar

  • Elias, J., Wu, Y., Zheng, T., and Panettieri, R. (1997). Cytokine- and virus-stimulated airway smooth muscle cells produce IL-11 and other IL-6-type cytokines. Am. J. Physiol. 273, 648–655.Google Scholar

  • Ellingsgaard, H., Ehses, J.A., Hammar, E.B., Van Lommel, L., Quintens, R., Martens, G., Kerr-Conte, J., Pattou, F., Berney, T., Pipeleers, D., et al. (2008). Interleukin-6 regulates pancreatic α-cell mass expansion. Proc. Natl. Acad. Sci. USA 105, 13163–13168.CrossrefGoogle Scholar

  • Ernst, M., Najdovska, M., Grail, D., Lundgren-May, T., Buchert, M., Tye, H., Matthews, V., Armes, J., Bhathal, P., Hughes, N., et al. (2008). STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. J. Clin. Invest. 118, 1727–1738.Google Scholar

  • Eulenfeld, R., Dittrich, A., Khouri, C., Muller, P. J., Mutze, B., Wolf, A., and Schaper, F. (2012). Interleukin-6 signalling: more than Jaks and STATs. Eur. J. Cell Biol. 91, 486–495.CrossrefGoogle Scholar

  • Ferreira, R.C., Freitag, D.F., Cutler, A.J., Howson, J.M.M., Rainbow, D.B., Smyth, D.J., Kaptoge, S., Clarke, P., Boreham, C., Coulson, R.M., et al. (2013). Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLos Genetics 9, e100344.Google Scholar

  • Finotto, S., Eigenbrod, T., Karwot, R., Boross, I., Doganci, A., Ito, H., Nishimoto, N., Yoshizaki, K., Kishimoto, T., Rose-John, S., et al. (2007). Local blockade of IL-6R signaling induces lung CD4+ T cell apoptosis in a murine model of asthma via regulatory T cells. Int. Immunol. 19, 685–693.CrossrefGoogle Scholar

  • Fleischmann, R., Kremer, J., Cush, J., Schulze-Koops, H., Connell, C., Bradley, J., Gruben, D., Wallenstein, G., Zwillich, S., Kanik, K., et al. (2012). Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507.Google Scholar

  • Fujio, Y., Maeda, M., Mohri, T., Obana, M., Iwakura, T., Hayama, A., Yamashita, T., Nakayama, H., and Azuma, J. (2011). Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. J. Pharmacol. Sci. 117, 213–222.Google Scholar

  • Gaillard, J.P., Bataille, R., Brailly, H., Zuber, C., Yasukawa, K., Attal, M., Maruo, N., Taga, T., Kishimoto, T., and Klein, B. (1993). Increased and highly stable levels of functional soluble interleukin-6 receptor in sera of patients with monoclonal gammopathy. Eur. J. Immunol. 23, 820–824.CrossrefGoogle Scholar

  • Galicia, J., Tai, H., Komatsu, Y., Shimada, Y., Akazawa, K., and Yoshie, H. (2004). Polymorphisms in the IL-6 receptor (IL-6R) gene: strong evidence that serum levels of soluble IL-6R are genetically influenced. Genes Immunity 5, 513–516.CrossrefGoogle Scholar

  • Garbers, C., Thaiss, W., Jones, G.W., Waetzig, G.H., Lorenzen, I., Guilhot, F., Lissilaa, R., Ferlin, W.G., Grotzinger, J., Jones, S.A., et al. (2011). Inhibition of classic signaling is a novel function of soluble glycoprotein 130 (sgp130), which is controlled by the ratio of interleukin 6 and soluble interleukin 6 receptor. J. Biol. Chem. 286, 42959–42970.Google Scholar

  • Garbers, C., Hermanns, H.M., Schaper, F., Müller-Newen, G., Grötzinger, J., Rose-John, S., and Scheller, J. (2012). Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev. 23, 85–97.Google Scholar

  • Garbers, C., Spudy, B., Aparicio-Siegmund, S., Waetzig, G.H., Sommer, J., Hölscher, C., Rose-John, S., Grötzinger, J., Lorenzen, I., and Scheller, J. (2013). An interleukin-6 receptor-dependent molecular switch mediates signal transduction of the IL-27 cytokine subunit p28 (IL-30) via a gp130 protein receptor homodimer. J. Biol. Chem. 288, 4346–4354.Google Scholar

  • Gibson, D., Montero, M., Ropeleski, M., Bergstrom, K., Ma, C., Ghosh, S., Merkens, H., Huang, J., Månsson, L., Sham, H., et al. (2010). Interleukin-11 reduces TLR4-induced colitis in TLR2-deficient mice and restores intestinal STAT3 signaling. Gastroenterology 139, 1277–1288.Google Scholar

  • Gravallese, E.M., Manning, C., Tsay, A., Naito, A., Pan, C., Amento, E., and Goldring, S.R. (2000). Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 43, 250–258.CrossrefPubMedGoogle Scholar

  • Grivennikov, S., Karin, E., Teric, J., Mucida, D., Yu, G.Y., Vallabhapurapu, S., Scheller, J., Rose-John, S., Cheroutre, H., Eckmann, L., et al. (2009). IL-6 and STAT3 are required for survival of intestinal epithelial cells and development of colitis associated cancer. Cancer Cell 15, 103–113.CrossrefGoogle Scholar

  • Haan, C., Rolvering, C., Raulf, F., Kapp, M., Drückes, P., Thoma, G., Behrmann, I., and Zerwes, H.G. (2011). Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem. Biol. 18, 314–323.CrossrefGoogle Scholar

  • Hammer, R., Maika, S., Richardson, J., Tang, J., and Taurog, J. (1990). Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112.CrossrefGoogle Scholar

  • Hashimoto, J., Garnero, P., van der Heijde, D., Miyasaka, N., Yamamoto, K., Kawai, S., Takeuchi, T., Yoshikawa, H., and Nishimoto, N. (2011). Humanized anti-interleukin-6-receptor antibody (tocilizumab) monotherapy is more effective in slowing radiographic progression in patients with rheumatoid arthritis at high baseline risk for structural damage evaluated with levels of biomarkers, radiography, and BMI: data from the SAMURAI study. Mod. Rheumatol. 21, 10–15.Google Scholar

  • Hawkins, G.A., Robinson, M.B., Hastie, A.T., Li, X., Li, H., Moore, W.C., Howard, T.D., Busse, W.W., Erzurum, S.C., Wenzel, S.E., et al. (2012). The IL6R variation Asp(358)Ala is a potential modifier of lung function in subjects with asthma. J. Allergy Clin. Immunol. 130, 510–515.Google Scholar

  • Heinrich, P., Behrmann, I., Haan, S., Hermanns, H., Müller-Newen, G., and Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20.Google Scholar

  • Hirota, H., Yoshida, K., Kishimoto, T., and Taga, T. (1995). Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc. Natl. Acad. Sci. USA 92, 4862.Google Scholar

  • Hosokawa, T., Kusugami, K., Ina, K., Ando, T., Shinoda, M., Imada, A., Ohsuga, M., Sakai, T., Matsuura, T., Ito, K., et al. (1999). Interleukin-6 and soluble interleukin-6 receptor in the colonic mucosa of inflammatory bowel disease. J. Gastroenterol. Hepatol. 14, 987–996.CrossrefGoogle Scholar

  • Howlett, M., Giraud, A., Lescesen, H., Jackson, C., Kalantzis, A., Van Driel, I., Robb, L., Van der Hoek, M., Ernst, M., Minamoto, T., et al. (2009). The interleukin-6 family cytokine interleukin-11 regulates homeostatic epithelial cell turnover and promotes gastric tumor development. Gastroenterology 136, 967–977.Google Scholar

  • Ito, H., Takazoe, M., Fukuda, Y., Hibi, T., Kusugami, K., Andoh, A., Matsumoto, T., Yamamura, T., Azuma, J., Nishimoto, N., et al. (2004). A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126, 989–996.Google Scholar

  • Jackson, C.B., Judd, L.M., Menheniott, T.R., Kronborg, I., Dow, C., Yeomans, N.D., Boussioutas, A., Robb, L., and Giraud, A.S. (2007). Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J. Pathol. 213, 140–151.Google Scholar

  • Jiang, J.K., Ghoreschi, K., Deflorian, F., Chen, Z., Perreira, M., Pesu, M., Smith, J., Nguyen, D.T., Liu, E.H., Leister, W., et al. (2008). Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). J. Med. Chem. 51, 8012–8018.Google Scholar

  • Jones, S.A., Scheller, J., and Rose-John, S. (2011). Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Invest. 121, 3375–3383.Google Scholar

  • Jostock, T., Mullberg, J., Ozbek, S., Atreya, R., Blinn, G., Voltz, N., Fischer, M., Neurath, M.F., and Rose-John, S. (2001). Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 268, 160–167.Google Scholar

  • Kabir, S. and Daar, G.A. (1995). Serum levels of interleukin-1, interleukin-6 and tumour necrosis factor-α in patients with gastric carcinoma. Cancer Lett. 95, 207–212.CrossrefGoogle Scholar

  • Kanda, T., Inoue, M., Kotajima, N., Fujimaki, S., Hoshino, Y., Kurabayashi, M., Kobayashi, I., and Tamura, J. (2000). Circulating interleukin-6 and interleukin-6 receptors in patients with acute and recent myocardial infarction. Cardiology 93, 191–196.CrossrefGoogle Scholar

  • Kang, Y., Siegel, P., Shu, W., Drobnjak, M., Kakonen, S., Cordón-Cardo, C., Guise, T., and Massagué, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549.PubMedCrossrefGoogle Scholar

  • Kiessling, S., Muller-Newen, G., Leeb, S., Hausmann, M., Rath, H., Strater, J., Spottl, T., Schlottmann, K., Grossmann, J., Montero-Julian, F., et al. (2004). Functional expression of the interleukin-11 receptor alpha-chain and evidence of antiapoptotic effects in human colonic epithelial cells. J. Biol. Chem. 279, 10304–10315.Google Scholar

  • Kimura, R., Maeda, M., Arita, A., Oshima, Y., Obana, M., Ito, T., Yamamoto, Y., Mohri, T., Kishimoto, T., Kawase, I., et al. (2007). Identification of cardiac myocytes as the target of interleukin 11, a cardioprotective cytokine. Cytokine 38, 107–115.Google Scholar

  • Kitamura, H., Kawata, H., Takahashi, F., Higuchi, Y., Furuichi, T., and Ohkawa, H. (1995). Bone marrow neutrophilia and suppressed bone turnover in human interleukin-6 transgenic mice. A cellular relationship among hematopoietic cells, osteoblasts, and osteoclasts mediated by stromal cells in bone marrow. Am. J. Pathol. 147, 1682–1692.Google Scholar

  • Kobara, M., Noda, K., Kitamura, M., Okamoto, A., Shiraishi, T., Toba, H., Matsubara, H., and Nakata, T. (2010). Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovas. Res. 87, 424–430.CrossrefGoogle Scholar

  • Kong, Y.Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C., Li, J., Elliott, R., McCabe, S., et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309.Google Scholar

  • Kotake, S., Udagawa, N., Hakoda, M., Mogi, M., Yano, K., Tsuda, E., Takahashi, K., Furuya, T., Ishiyama, S., Kim, K.J., et al. (2001). Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum. 44, 1003–1012.CrossrefGoogle Scholar

  • Ladenburger, A., Seehase, M., Kramer, B., Thomas, W., Wirbelauer, J., Speer, C., and Kunzmann, S. (2010). Glucocorticoids potentiate IL-6-induced SP-B expression in H441 cells by enhancing the JAK-STAT signaling pathway. American Journal of Physiology. Lung Cell Mol. Physiol. 299, 84.Google Scholar

  • Lee, C., Hartl, D., Matsuura, H., Dunlop, F., Scotney, P., Fabri, L., Nash, A., Chen, N.-Y., Tang, C.-Y., Chen, Q., et al. (2008). Endogenous IL-11 signaling is essential in Th2- and IL-13-induced inflammation and mucus production. Am. J. Respir. Cell Mol. Biol. 39, 739–746.Google Scholar

  • Lewis, V., Ozawa, M., Deavers, M., Wang, G., Shintani, T., Arap, W., and Pasqualini, R. (2009). The interleukin-11 receptor α as a candidate ligand-directed target in osteosarcoma: consistent data from cell lines, orthotopic models, and human tumor samples. Cancer Res. 69, 1995–1999.Google Scholar

  • Liao, W., Lin, J.-X., Wang, L., Li, P., and Leonard, W. (2011). Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559.CrossrefGoogle Scholar

  • Litt, M.R., Jeremy, R.W., Weisman, H.F., Winkelstein, J.A., and Becker, L.C. (1989). Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80, 1816–1827.CrossrefGoogle Scholar

  • Lu, Z.Y., Brochier, J., Wijdenes, J., Brailly, H., Bataille, R., and Klein, B. (1992). High amounts of circulating interleukin (IL)-6 in the form of monomeric immune complexes during anti-IL-6 therapy. Towards a new methodology for measuring overall cytokine production in human in vivo. Eur. J. Biochem. 22, 2819–2824.Google Scholar

  • Lu, W., Gong, D., Bar-Sagi, D., and Cole, P.A. (2001). Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8, 759–769.CrossrefGoogle Scholar

  • Lu, W., Shen, K., and Cole, P.A. (2003). Chemical dissection of the effects of tyrosine phosphorylation of SHP-2. Biochemistry 42, 5461–5468.PubMedCrossrefGoogle Scholar

  • Lupardus, P.J., Skiniotis, G., Rice, A.J., Thomas, C., Fischer, S., Walz, T., and Garcia, K.C. (2011). Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure 19, 45–55.Google Scholar

  • Marini, M., Vittori, E., Hollemborg, J., and Mattoli, S. (1992). Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J. Allergy Clin. Immunol. 89, 1001–1009.CrossrefGoogle Scholar

  • Matadeen, R., Hon, W.C., Heath, J.K., Jones, E.Y., and Fuller, S. (2007). The dynamics of signal triggering in a gp130-receptor complex. Structure 15, 441–448.Google Scholar

  • McFarland-Mancini, M.M., Funk, H.M., Paluch, A.M., Zhou, M., Giridhar, P.V., Mercer, C.A., Kozma, S.C., and Drew, A.F. (2010). Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J. Immunol. 184, 7219–7228.Google Scholar

  • Meléndez, G.C., McLarty, J.L., Levick, S.P., Du, Y., Janicki, J.S., and Brower, G.L. (2010). Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56, 225–231.CrossrefGoogle Scholar

  • Minshall, E., Chakir, J., Laviolette, M., Molet, S., Zhu, Z., Olivenstein, R., Elias, J., and Hamid, Q. (2000). IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J. Allergy Clin. Immunol. 105, 232–238.CrossrefGoogle Scholar

  • Mir, S.A., Chatterjee, A., Mitra, A., Pathak, K., Mahata, S.K., and Sarkar, S. (2012). Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. J. Biol. Chem. 287, 2666–2677.Google Scholar

  • Mitsuyama, K., Sasaki, E., Toyonaga, A., Ikeda, H., Tsuruta, O., Irie, A., Arima, N., Oriishi, T., Harada, K., Fujisaki, K., et al. (1991). Colonic mucosal interleukin-6 in inflammatory bowel disease. Digestion 50, 104–111.CrossrefGoogle Scholar

  • Mitsuyama, K., Toyonaga, A., Sasaki, E., Ishida, O., Ikeda, H., Tsuruta, O., Harada, K., Tateishi, H., Nishiyama, T., and Tanikawa, K. (1995). Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut 36, 45–49.CrossrefGoogle Scholar

  • Mitsuyama, K., Matsumoto, S., Rose-John, S., Suzuki, A., Hara, T., Tomiyasu, N., Handa, K., Tsuruta, O., Funabashi, H., Scheller, J., et al. (2006). STAT3 activation via interleukin-6 trans-signaling contributes to ileitis in SAMP1/Yit mice. Gut 55, 1263–1269.Google Scholar

  • Mohr, A., Chatain, N., Domoszlai, T., Rinis, N., Sommerauer, M., Vogt, M., and Müller-Newen, G. (2012). Dynamics and non-canonical aspects of JAK/STAT signalling. Eur. J. Cell Biol. 91, 524–532.CrossrefPubMedGoogle Scholar

  • Montero-Julian, F.A. (2001). The soluble IL-6 receptors: serum levels and biological function. Cell. Mol. Biol. 47, 583–597.Google Scholar

  • Müller-Newen, G., Küster, A., Hemmann, U., Keul, R., Horsten, U., Martens, A., Graeve, L., Wijdenes, J., and Heinrich, P.C. (1998). Soluble IL-6 receptor potentiates the antagonistic activity of soluble gp130 on IL-6 responses. J. Immunol. 161, 6347–6355.Google Scholar

  • Nakayama, T., Yoshizaki, A., Izumida, S., Suehiro, T., Miura, S., Uemura, T., Yakata, Y., Shichijo, K., Yamashita, S., and Sekin, I. (2007). Expression of interleukin-11 (IL-11) and IL-11 receptor α in human gastric carcinoma and IL-11 upregulates the invasive activity of human gastric carcinoma cells. Int. J. Oncol. 30, 825–833.Google Scholar

  • Necula, L.G., Chivu-Economescu, M., Stanciulescu, E.L., Bleotu, C., Dima, S.O., Alexiu, I., Dumitru, A., Constantinescu, G., Popescu, I., and Diaconu, C.C. (2012). IL-6 and IL-11 as markers for tumor aggressiveness and prognosis in gastric adenocarcinoma patients without mutations in Gp130 subunits. J. Gastrointestin. Liver Dis. 21, 23–29.Google Scholar

  • Nieminen, P., Morgan, N., Fenwick, A., Parmanen, S., Veistinen, L., Mikkola, M., van der Spek, P., Giraud, A., Judd, L., Arte, S., et al. (2011). Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am. J. Hum. Genet. 89, 67–81.CrossrefGoogle Scholar

  • Nishimoto, N., Kanakura, Y., Aozasa, K., Johkoh, T., Nakamura, M., Nakano, S., Nakano, N., Ikeda, Y., Sasaki, T., Nishioka, K., et al. (2005). Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106, 2627–2623.CrossrefGoogle Scholar

  • Nishimoto, N., Terao, K., Mima, T., Nakahara, H., Takagi, N., and Kakehi, T. (2008). Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112, 3959–3964.CrossrefGoogle Scholar

  • Nowell, M.A., Richards, P.J., Horiuchi, S., Yamamoto, N., Rose-John, S., Topley, N., Williams, A.S., and Jones, S.A. (2003). Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J. Immunol. 171, 3202–3209.Google Scholar

  • Nowell, M.A., Williams, A.S., Carty, S.A., Scheller, J., Hayes, A.J., Jones, G.W., Richards, P.J., Slinn, S., Ernst, M., Jenkins, B.J., et al. (2009). Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis. J. Immunol. 182, 613–622.Google Scholar

  • Obana, M., Maeda, M., Takeda, K., Hayama, A., Mohri, T., Yamashita, T., Nakaoka, Y., Komuro, I., Takeda, K., Matsumiya, G., et al. (2010). Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation 121, 684–691.CrossrefGoogle Scholar

  • Obana, M., Miyamoto, K., Murasawa, S., Iwakura, T., Hayama, A., Yamashita, T., Shiragaki, M., Kumagai, S., Miyawaki, A., Takewaki, K., et al. (2012). Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. Am. J. Physiol.-Heart C. 303, 77.Google Scholar

  • Onnis, B., Fer, N., Rapisarda, A., Perez, V.S., and Melillo, G. (2013). Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells. J. Clin. Invest. 123, 1615–1629.Google Scholar

  • O’Shea, J., Kontzias, A., Yamaoka, K., Tanaka, Y., and Laurence, A. (2013). Janus kinase inhibitors in autoimmune diseases. Annals Rheum. Dis. 72 (Suppl 2), ii111–ii115.Google Scholar

  • Pack, R.J., Al-Ugaily, L.H., and Morris, G. (1981). The cells of the tracheobronchial epithelium of the mouse: a quantitative light and electron microscope study. J. Anat. 132, 71–84.Google Scholar

  • Palmqvist, P., Persson, E., Conaway, H.H., and Lerner, U.H. (2002). IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-κB ligand, osteoprotegerin, and receptor activator of NF-κB in mouse calvariae. J. Immunol. 169, 3353–3362.Google Scholar

  • Pasare, C. and Medzhitov, R. (2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036.Google Scholar

  • Peterson, R., Wang, L., Albert, L., Keith, J., and Dorner, A. (1998). Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease. Lab. Invest. 78, 1503–1512.Google Scholar

  • Pflanz, S., Tacken, I., Grötzinger, J., Jacques, Y., Minvielle, S., Dahmen, H., Heinrich, P.C., and Muller-Newen, G. (1999). A fusion protein of interleukin-11 and soluble interleukin-11 receptor acts as a superagonist on cells expressing gp130. FEBS Lett. 450, 117–122.Google Scholar

  • Poli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G., Rodan, G. A., and Costantini, F. (1994). Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13, 1189–1196.Google Scholar

  • Putoczki, T. and Ernst, M. (2010). More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J. Leukoc. Biol. 88, 1109–1117.CrossrefGoogle Scholar

  • Rose-John, S. and Heinrich, P.C. (1994). Soluble receptors for cytokines and growth factors: generation and biological function. Biochem. J. 300, 281–290.Google Scholar

  • Rose-John, S., Schooltink, H., Lenz, D., Hipp, E., Dufhues, G., Schmitz, H., Schiel, X., Hirano, T., Kishimoto, T., and Heinrich, P. (1990). Studies on the structure and regulation of the human hepatic interleukin-6 receptor. Eur. J. Biochem. 190, 79–83.Google Scholar

  • Rose-John, S., Waetzig, G.H., Scheller, J., Grotzinger, J., and Seegert, D. (2007). The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin. Ther. Targets 11, 613–624.CrossrefGoogle Scholar

  • Samavedam, U., Kalies, K., Scheller, J., Sadeghi, H., Gupta, Y., Jonkman, M., Schmidt, E., Westermann, J., Zillikens, D., Rose-John, S., et al. (2013). Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction. J. Autoimmun. 40, 74–85.CrossrefGoogle Scholar

  • Sandborn, W., Ghosh, S., Panes, J., Vranic, I., Su, C., Rousell, S., Niezychowski, W., and Study, A.I. (2012). Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 367, 616–624.Google Scholar

  • Sands, B., Bank, S., Sninsky, C., Robinson, M., Katz, S., Singleton, J., Miner, P., Safdi, M., Galandiuk, S., Hanauer, S., et al. (1999). Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease. Gastroenterology 117, 58–64.Google Scholar

  • Sands, B., Winston, B., Salzberg, B., Safdi, M., Barish, C., Wruble, L., Wilkins, R., Shapiro, M., Schwertschlag, U., and group, R.-C. s. S. (2002). Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn’s disease. Aliment. Pharmacol. Ther. 16, 399–406.CrossrefGoogle Scholar

  • Sawa, Y., Ichikawa, H., Kagisaki, K., Ohata, T., and Matsuda, H. (1998). Interleukin-6 derived from hypoxic myocytes promotes neutrophil-mediated reperfusion injury in myocardium. J. Thorac. Cardiovasc. Surg. 116, 511–517.Google Scholar

  • Scheller, J. and Rose-John, S. (2012). The interleukin 6 pathway and atherosclerosis. Lancet 380, 338.Google Scholar

  • Scheller, J., Schuster, B., Holscher, C., Yoshimoto, T., and Rose-John, S. (2005). No inhibition of IL-27 signaling by soluble gp130. Biochem. Biophys. Res. Commun. 326, 724–728.Google Scholar

  • Scheller, J., Chalaris, A., Garbers, C., and Rose-John, S. (2011a). ADAM17: a molecular switch controlling inflammatory and regenerative responses. Trends Immunol. 32, 380–387.CrossrefGoogle Scholar

  • Scheller, J., Chalaris, A., Schmidt-Arras, D., and Rose-John, S. (2011b). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878–888.Google Scholar

  • Schuett, H., Oestreich, R., Waetzig, G.H., Annema, W., Luchtefeld, M., Hillmer, A., Bavendiek, U., von Felden, J., Divchev, D., Kempf, T., et al. (2012). Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 281–290.CrossrefGoogle Scholar

  • Schuster, B., Kovaleva, M., Sun, Y., Regenhard, P., Matthews, V., Grötzinger, J., Rose-John, S., and Kallen, K.J. (2003). Signaling of human ciliary neurotrophic factor (CNTF) revisited. The interleukin-6 receptor can serve as an α-receptor for CTNF. J. Biol. Chem. 278, 9528–9535.Google Scholar

  • Snyers, L., De Wit, L., and Content, J. (1990). Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells. Proc. Natl. Acad. Sci. USA 87, 2838–2842.Google Scholar

  • Suthaus, J., Stuhlmann-Laeisz, C., Tompkins, V.S., Rosean, T.R., Klapper, W., Tosato, G., Janz, S., Scheller, J., and Rose-John, S. (2012). HHV8 encoded viral IL-6 collaborates with mouse IL-6 in MCD-like development in mice. Blood 119, 5173–5181.Google Scholar

  • Takeuchi, Y., Watanabe, S., Ishii, G., Takeda, S., Nakayama, K., Fukumoto, S., Kaneta, Y., Inoue, D., Matsumoto, T., Harigaya, K., et al. (2002). Interleukin-11 as a stimulatory factor for bone formation prevents bone loss with advancing age in mice. J. Biol. Chem. 277, 49011–49018.Google Scholar

  • Tanaka, T., Narazaki, M., and Kishimoto, T. (2012). Therapeutic targeting of the interleukin-6 receptor. Annu. Rev. Pharmacol. Toxicol. 52, 199–219.CrossrefGoogle Scholar

  • Tang, W., Geba, G., Zheng, T., Ray, P., Homer, R., Kuhn, C., Flavell, R., and Elias, J. (1996). Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J. Clin. Invest. 98, 2845–2853.CrossrefGoogle Scholar

  • Tang, L.P., Cho, C.H., Hui, W.M., Huang, C., Chu, K.M., Xia, H.H., Lam, S.K., Rashid, A., Wong, B.C., and Chan, A.O. (2006). An inverse correlation between Interleukin-6 and select gene promoter methylation in patients with gastric cancer. Digestion 74, 85–90.Google Scholar

  • Tato, C.M. and Cua, D.J. (2008). SnapShot: Cytokines I. Cell 132, 324.Google Scholar

  • Tebbutt, N., Giraud, A., Inglese, M., Jenkins, B., Waring, P., Clay, F., Malki, S., Alderman, B., Grail, D., Hollande, F., et al. (2002). Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 8, 1089–1097.Google Scholar

  • Thabard, W., Collette, M., Mellerin, M.P., Puthier, D., Barillé, S., Bataille, R., and Amiot, M. (2001). IL-6 upregulates its own receptor on some human myeloma cell lines. Cytokine 14, 352–356.CrossrefGoogle Scholar

  • Underhill-Day, N., McGovern, L., Karpovich, N., Mardon, H., Barton, V., and Heath, J. (2003). Functional characterization of W147A: a high-affinity interleukin-11 antagonist. Endocrinology 144, 3406–3414.Google Scholar

  • van Vollenhoven, R., Fleischmann, R., Cohen, S., Lee, E., García Meijide, J., Wagner, S., Forejtova, S., Zwillich, S., Gruben, D., Koncz, T., et al. (2012). Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519.Google Scholar

  • Waetzig, G.H. and Rose-John, S. (2012). Hitting a complex target: an update on interleukin-6 trans-signalling. Expert Opin. Ther. Targets 16, 225–236.CrossrefGoogle Scholar

  • Walsh, N.C., Crotti, T.N., Goldring, S.R., and Gravallese, E.M. (2005). Rheumatic diseases: the effects of inflammation on bone. Immunol. Rev. 208, 228–251.Google Scholar

  • Wang, J., Homer, R., Hong, L., Cohn, L., Lee, C., Jung, S., and Elias, J. (2000). IL-11 selectively inhibits aeroallergen-induced pulmonary eosinophilia and Th2 cytokine production. J. Immunol. 165, 2222–2231.Google Scholar

  • Williams, W., Scherle, P., Shi, J., Newton, R., McKeever, E., Fridman, J., Burn, T., Vaddi, K., Levy, R., and Moreland, L. (2008). A randomized placebo-controlled study of INCB018424, a selective Janus kinase 1 & 2 (JAK1 & 2) inhibitor in rheumatoid arthritis (RA). Arthritis Rheum. 58, S431.Google Scholar

  • Wong, P.K., Quinn, J.M., Sims, N.A., van Nieuwenhuijze, A., Campbell, I.K., and Wicks, I.P. (2006). Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum. 54, 158–168.CrossrefGoogle Scholar

  • Wu, C.W., Wang, S.R., Chao, M.F., Wu, T.C., Lui, W.Y., P’eng, F.K., and Chi, C.W. (1996). Serum interleukin-6 levels reflect disease status of gastric cancer. Am. J. Gastroenterol. 91, 1417–1422.Google Scholar

  • Xu, Y., Kershaw, N.J., Luo, C.S., Soo, P., Pocock, M.J., Czabotar, P.E., Hilton, D.J., Nicola, N.A., Garrett, T.P., and Zhang, J.G. (2010). Crystal structure of the entire ectodomain of gp130: insights into the molecular assembly of the tall cytokine receptor complexes. J. Biol. Chem. 285, 21214–21218.Google Scholar

  • Yamamoto, I., Yoshizaki, K., Kishimoto, T., and Ito, H. (2000). IL-6 is required for the development of Th1 cell-mediated murine colitis. J. Immunol. 164, 4878–4882.Google Scholar

  • Yamauchi-Takihara, K., Ihara, Y., Ogata, A., Yoshizaki, K., Azuma, J., and Kishimoto, T. (1995). Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 91, 1520–1524.CrossrefGoogle Scholar

  • Yin, J., Selander, K., Chirgwin, J., Dallas, M., Grubbs, B., Wieser, R., Massagué, J., Mundy, G., and Guise, T. (1999). TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206.Google Scholar

  • Yokoyama, A., Kohno, N., Fujino, S., Hamada, H., Inoue, Y., Fujioka, S., Ishida, S., and Hiwada, K. (1995). Circulating interleukin-6 levels in patients with bronchial asthma. Am. J. Respir. Crit. Care Med. 151, 1354–1358.Google Scholar

  • Yoshitake, F., Itoh, S., Narita, H., Ishihara, K., and Ebisu, S. (2008). Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-κB signaling pathways. J. Biol. Chem. 283, 11535–11540.Google Scholar

  • Yoshizaki, A., Nakayama, T., Yamazumi, K., Yakata, Y., Taba, M., and Sekine, I. (2006). Expression of interleukin (IL)-11 and IL-11 receptor in human colorectal adenocarcinoma: IL-11 up-regulation of the invasive and proliferative activity of human colorectal carcinoma cells. Int. J. Oncol. 29, 869–876.Google Scholar

  • Zhang, W., Tsuda, M., Yang, G.X., Tsuneyama, K., Rong, G., Ridgway, W.M., Ansari, A.A., Flavell, R.A., Coppel, R.L., Lian, Z.X., et al. (2010). Deletion of interleukin-6 in mice with the dominant negative form of transforming growth factor beta receptor II improves colitis but exacerbates autoimmune cholangitis. Hepatology 52, 215–222.CrossrefGoogle Scholar

About the article

Christoph Garbers

Christoph Garbers received his diploma degree in Pharmacy in 2007 at the University of Kiel, Germany, and his licensure as pharmacist in 2008. He joined the group ‘Cytokine and Metalloproteinase Research’ at the Institute of Biochemistry of the University of Kiel in 2008 and obtained his Dr. rer. nat. in 2011 for the functional characterization of ADAM proteases in IL-6R shedding. He then moved to the Heinrich-Heine-University Düsseldorf, Germany, and has worked since 2011 at the Institute of Biochemistry and Molecular Biology II as a postdoctoral research associate. His current interests are focused on limited proteolysis of cytokine receptors and signal transduction of IL-6 type cytokines.

Jürgen Scheller

Jürgen Scheller finished his diploma study of Biology in 1997 at the Georg-August University of Göttingen, Germany and obtained his Dr. rer. nat. in 1999 for the role of MPH1 in DNA-repair of Saccharomyces cerevisiae. He joined the group ‘Phytoantibodies’ at the Leibniz-Institut IPK in Gatersleben, Germany in 1999. From 1999 to 2002 he worked on spider silk proteins from transgenic plants. In 2002 he became assistant professor at the Biochemical Institute at Christian-Albrechts-Universität of Kiel, Germany. In 2008 he became W2-Professor for ‘Cytokine Signaling’ within the Cluster of Excellence ‘Inflammation at Interfaces’ at Christian-Albrechts-Universität of Kiel, Germany. In 2010 he moved to the Heinrich-Heine-University and became the director of the Institute of Biochemistry and Molecular Biology II as a W3-Professor. His present interests are focused on in vitro and in vivo studies of IL-6-type cytokines.


Corresponding author: Jürgen Scheller, Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany


Received: 2013-05-02

Accepted: 2013-05-30

Published Online: 2013-06-04

Published in Print: 2013-09-01


Citation Information: Biological Chemistry, Volume 394, Issue 9, Pages 1145–1161, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0166.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sammel, Peters, Lokau, Scharfenberg, Werny, Linder, Garbers, Rose-John, and Becker-Pauly
International Journal of Molecular Sciences, 2019, Volume 20, Number 15, Page 3677
[2]
Dongyao Wang, Xiaohu Zheng, Binqing Fu, Zhigang Nian, Yeben Qian, Rui Sun, Zhigang Tian, and Haiming Wei
EBioMedicine, 2019, Volume 46, Page 119
[3]
Rongjia Zhou, Zhanbin Wu, Xixiang Deng, and Haojun Chen
Journal of Clinical Laboratory Analysis, 2019
[4]
Doreen M. Floss and Jürgen Scheller
Cytokine & Growth Factor Reviews, 2019, Volume 47, Page 1
[5]
Maria Agthe, Julian Brügge, Yvonne Garbers, Marieke Wandel, Birte Kespohl, Philipp Arnold, Charlotte M. Flynn, Juliane Lokau, Samadhi Aparicio-Siegmund, Christian Bretscher, Stefan Rose-John, Georg H. Waetzig, Tracy Putoczki, Joachim Grötzinger, and Christoph Garbers
Cell Reports, 2018, Volume 25, Number 1, Page 10
[6]
Larissa Lamertz, Franziska Rummel, Robin Polz, Paul Baran, Selina Hansen, Georg H. Waetzig, Jens M. Moll, Doreen M. Floss, and Jürgen Scheller
Science Signaling, 2018, Volume 11, Number 550, Page eaar7388
[7]
Kuo-Ming Yu, Johnson Yiu-Nam Lau, Manson Fok, Yuk-Keung Yeung, Siu-Ping Fok, Tsan-Lin Hu, Yuan-Jang Tsai, and Qui-Lim Choo
Journal of Pharmaceutical Sciences, 2018
[8]
K.L.R. Gustafsson, T. Renné, C. Söderberg-Naucler, and L.M. Butler
Cytokine, 2018
[9]
Shubham Goel, Smrity Sahu, Ranjana W. Minz, Surjit Singh, Deepti Suri, Young M. Oh, Amit Rawat, Shobha Sehgal, and Biman Saikia
Frontiers in Immunology, 2018, Volume 9
[10]
Juliane Lokau and Christoph Garbers
Journal of Biological Chemistry, 2018, Volume 293, Number 17, Page 6398
[11]
Alexander Rebl and Tom Goldammer
Fish & Shellfish Immunology, 2018
[12]
[13]
Aonghus J. McCarthy, Caroline Coleman-Vaughan, and Justin V. McCarthy
Biochemical Society Transactions, 2017, Volume 45, Number 6, Page 1185
[14]
Juliane Lokau, Sascha Göttert, Philipp Arnold, Stefan Düsterhöft, David Massa López, Joachim Grötzinger, and Christoph Garbers
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2017
[15]
Saara Ollila, Eva Domènech-Moreno, Kaisa Laajanen, Iris P.L. Wong, Sushil Tripathi, Nalle Pentinmikko, Yajing Gao, Yan Yan, Elina H. Niemelä, Timothy C. Wang, Benoit Viollet, Gustavo Leone, Pekka Katajisto, Kari Vaahtomeri, and Tomi P. Mäkelä
Journal of Clinical Investigation, 2017
[17]
Patricia Y. Akinfenwa, Wesley S. Bond, Cristhian J. Ildefonso, Mary Y. Hurwitz, and Richard L. Hurwitz
Journal of Biological Chemistry, 2017, Volume 292, Number 35, Page 14381
[18]
Juliane Lokau, Charlotte M. Flynn, and Christoph Garbers
Biochemical and Biophysical Research Communications, 2017, Volume 491, Number 2, Page 296
[19]
Juliane Lokau, Maria Agthe, Charlotte M. Flynn, and Christoph Garbers
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2017
[20]
Janina Wolf, Georg H. Waetzig, Athena Chalaris, Torsten M. Reinheimer, Henning Wege, Stefan Rose-John, and Christoph Garbers
Journal of Biological Chemistry, 2016, Volume 291, Number 31, Page 16186
[21]
Maria Agthe, Yvonne Garbers, Tracy Putoczki, and Christoph Garbers
Placenta, 2017, Volume 57, Page 13
[22]
Alexandra Stähli, Dieter Bosshardt, Anton Sculean, Reinhard Gruber, and Sudha Agarwal
PLoS ONE, 2014, Volume 9, Number 9, Page e105672
[23]
Samadhi Aparicio-Siegmund, Jens M. Moll, Juliane Lokau, Melanie Grusdat, Jutta Schröder, Svenja Plöhn, Stefan Rose-John, Joachim Grötzinger, Philipp A. Lang, Jürgen Scheller, Christoph Garbers, and Muriel Moser
PLoS ONE, 2014, Volume 9, Number 9, Page e107990
[24]
Juliane Lokau, Marieke Wandel, and Christoph Garbers
The International Journal of Biochemistry & Cell Biology, 2017, Volume 85, Page 6
[25]
Steffen Riethmueller, Prasath Somasundaram, Johanna C. Ehlers, Chien-Wen Hung, Charlotte M. Flynn, Juliane Lokau, Maria Agthe, Stefan Düsterhöft, Yijue Zhu, Joachim Grötzinger, Inken Lorenzen, Tomas Koudelka, Kosuke Yamamoto, Ute Pickhinke, Rielana Wichert, Christoph Becker-Pauly, Marisa Rädisch, Alexander Albrecht, Markus Hessefort, Dominik Stahnke, Carlo Unverzagt, Stefan Rose-John, Andreas Tholey, Christoph Garbers, and Philippa Marrack
PLOS Biology, 2017, Volume 15, Number 1, Page e2000080
[26]
Hanna Dams-Kozlowska, Eliza Kwiatkowska-Borowczyk, Katarzyna Gryska, Anna Lewandowska, Andrzej Marszalek, Sebastian Adamczyk, Anna Kowalik, Ewa Leporowska, Andrzej Mackiewicz, and Kevin D Bunting
PLOS ONE, 2016, Volume 11, Number 5, Page e0154520
[27]
Andrei Sokolov, Alexei Kazakov, Valery Solovyev, Ramis Ismailov, Vladimir Uversky, Yulia Lapteva, Roman Mikhailov, Ekaterina Pavlova, Iana Terletskaya, Ludmila Ermolina, Sergei Permyakov, and Eugene Permyakov
Molecules, 2016, Volume 21, Number 12, Page 1632
[28]
Emiko Sano, Toshiaki Takei, Takuya Ueda, and Kouhei Tsumoto
Biochimica et Biophysica Acta (BBA) - General Subjects, 2017, Volume 1861, Number 2, Page 205
[29]
Niloufar Monhasery, Jens Moll, Carly Cuman, Manuel Franke, Larissa Lamertz, Rebecca Nitz, Boris Görg, Dieter Häussinger, Juliane Lokau, Doreen M. Floss, Roland Piekorz, Eva Dimitriadis, Christoph Garbers, and Jürgen Scheller
Cell Reports, 2016, Volume 16, Number 4, Page 1067
[30]
Juliane Lokau, Maria Agthe, and Christoph Garbers
Mediators of Inflammation, 2016, Volume 2016, Page 1
[31]
Eugene A. Permyakov, Vladimir N. Uversky, and Sergei E. Permyakov
Cell Biochemistry and Biophysics, 2016, Volume 74, Number 3, Page 285
[32]
Manica Negahdaripour, Navid Nezafat, and Younes Ghasemi
Cytokine & Growth Factor Reviews, 2016, Volume 32, Page 41
[33]
Steffen Riethmueller, Johanna C. Ehlers, Juliane Lokau, Stefan Düsterhöft, Katharina Knittler, Gregor Dombrowsky, Joachim Grötzinger, Björn Rabe, Stefan Rose-John, and Christoph Garbers
Scientific Reports, 2016, Volume 6, Number 1
[35]
Cong Zheng, Xin-Wen Zhou, and Jian-Zhi Wang
Translational Neurodegeneration, 2016, Volume 5, Number 1
[36]
Alexei S. Kazakov, Andrei S. Sokolov, Alisa A. Vologzhannikova, Maria E. Permyakova, Polina A. Khorn, Ramis G. Ismailov, Konstantin A. Denessiouk, Alexander I. Denesyuk, Victoria A. Rastrygina, Viktoriia E. Baksheeva, Evgeni Yu. Zernii, Dmitry V. Zinchenko, Vladimir V. Glazatov, Vladimir N. Uversky, Tajib A. Mirzabekov, Eugene A. Permyakov, and Sergei E. Permyakov
Journal of Biomolecular Structure and Dynamics, 2017, Volume 35, Number 1, Page 78
[37]
Boel De Paepe and Jana Zschüntzsch
International Journal of Molecular Sciences, 2015, Volume 16, Number 8, Page 18683
[38]
Juliane Lokau, Rebecca Nitz, Maria Agthe, Niloufar Monhasery, Samadhi Aparicio-Siegmund, Neele Schumacher, Janina Wolf, Katja Möller-Hackbarth, Georg H. Waetzig, Joachim Grötzinger, Gerhard Müller-Newen, Stefan Rose-John, Jürgen Scheller, and Christoph Garbers
Cell Reports, 2016, Volume 14, Number 7, Page 1761
[39]
M. van de Vyver, C. Niesler, K.H. Myburgh, and W.F. Ferris
Molecular and Cellular Endocrinology, 2016, Volume 426, Page 1
[40]
Dixon H. Xu, Ziwen Zhu, Mark R. Wakefield, Huaping Xiao, Qian Bai, and Yujiang Fang
Cancer Letters, 2016, Volume 373, Number 2, Page 156
[41]
Janina Wolf, Georg H. Waetzig, Torsten M. Reinheimer, Jürgen Scheller, Stefan Rose-John, and Christoph Garbers
Biochemical and Biophysical Research Communications, 2016, Volume 470, Number 4, Page 870
[42]
Rebecca Nitz, Juliane Lokau, Samadhi Aparicio-Siegmund, Jürgen Scheller, and Christoph Garbers
Biochimie, 2015, Volume 119, Page 175
[43]
Aida Habtezion
Current Opinion in Gastroenterology, 2015, Volume 31, Number 5, Page 395
[44]
Kris Janssens, Helena Slaets, and Niels Hellings
Annals of the New York Academy of Sciences, 2015, Volume 1351, Number 1, Page 52
[45]
Chenfei Zhou, Jun Ji, Qu Cai, Min Shi, Xuehua Chen, Yingyan Yu, Zhenggang Zhu, and Jun Zhang
BMC Cancer, 2015, Volume 15, Number 1
[46]
Tracy L Putoczki and Matthias Ernst
Immunotherapy, 2015, Volume 7, Number 4, Page 441
[47]
Jürgen Scheller, Christoph Garbers, and Stefan Rose-John
Seminars in Immunology, 2014, Volume 26, Number 1, Page 2
[48]
Christoph Garbers and Stefan Rose-John
Journal of Proteome Research, 2015, Volume 14, Number 2, Page 1330
[49]
Tracy L. Putoczki, Renwick C. J. Dobson, and Michael D. W. Griffin
Acta Crystallographica Section D Biological Crystallography, 2014, Volume 70, Number 9, Page 2277
[50]
Chuanli Ren, Yong Chen, Chongxu Han, Deyuan Fu, and Hui Chen
Tumor Biology, 2014, Volume 35, Number 11, Page 11467
[51]
Janina Wolf, Stefan Rose-John, and Christoph Garbers
Cytokine, 2014, Volume 70, Number 1, Page 11
[52]
Christoph Garbers, Niloufar Monhasery, Samadhi Aparicio-Siegmund, Juliane Lokau, Paul Baran, Mari A. Nowell, Simon A. Jones, Stefan Rose-John, and Jürgen Scheller
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2014, Volume 1842, Number 9, Page 1485
[53]
Koji Taniguchi and Michael Karin
Seminars in Immunology, 2014, Volume 26, Number 1, Page 54
[54]
Rebecca C Robey, Salvinia Mletzko, Charlotte Colley, Kirsty Balachandran, and Mark Bower
Immunotherapy, 2014, Volume 6, Number 2, Page 211
[55]
Christoph Garbers, Fabian Kuck, Samadhi Aparicio-Siegmund, Kirstin Konzak, Mareike Kessenbrock, Annika Sommerfeld, Dieter Häussinger, Philipp Lang, Dirk Brenner, Tak Wah Mak, Stefan Rose-John, Frank Essmann, Klaus Schulze-Osthoff, Roland Piekorz, and Jürgen Scheller
Cell Cycle, 2013, Volume 12, Number 21, Page 3421
[56]
Shili Xu and Nouri Neamati
Expert Opinion on Therapeutic Targets, 2013, Volume 17, Number 11, Page 1303

Comments (0)

Please log in or register to comment.
Log in