Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 395, Issue 10


Inflammatory outcomes of apoptosis, necrosis and necroptosis

Pavel Davidovich
  • Cellular Biotechnology Laboratory, Saint-Petersburg State Institute of Technology, Moskovskii prospekt, St. Petersburg, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Conor J. Kearney
  • Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seamus J. Martin
  • Corresponding author
  • Cellular Biotechnology Laboratory, Saint-Petersburg State Institute of Technology, Moskovskii prospekt, St. Petersburg, Russia
  • Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-05 | DOI: https://doi.org/10.1515/hsz-2014-0164


Microbial infection and tissue injury are well established as the two major drivers of inflammation. However, although it is widely accepted that necrotic cell death can trigger or potentiate inflammation, precisely how this is achieved still remains relatively obscure. Certain molecules, which have been dubbed ‘damage-associated molecular patterns’ (DAMPs) or alarmins, are thought to promote inflammation upon release from necrotic cells. However, the precise nature and relative potency of DAMPs, compared to conventional pro-inflammatory cytokines or pathogen-associated molecular patterns (PAMPs), remains unclear. How different modes of cell death impact on the immune system also requires further clarification. Apoptosis has long been regarded as a non-inflammatory or even anti-inflammatory mode of cell death, but recent studies suggest that this is not always the case. Necroptosis is a programmed form of necrosis that is engaged under certain conditions when caspase activation is blocked. Necroptosis is also regarded as a highly pro-inflammatory mode of cell death but there has been little explicit examination of this issue. Here we discuss the inflammatory implications of necrosis, necroptosis and apoptosis and some of the unresolved questions concerning how dead cells influence inflammatory responses.

Keywords: alarmins; apoptosis; cell death; danger; damage-associated molecular patterns; inflammation; necrosis; necroptosis


  • Altemeier, W.A., Zhu, X., Berrington, W.R., Harlan, J.M., and Liles, W.C. (2007). Fas (CD95). induces macrophage proinflammatory chemokine production via a MyD88-dependent, caspase-independent pathway. J. Leukoc. Biol. 82, 721–718.Google Scholar

  • Azijli, K., Yuvaraj, S., Peppelenbosch, M.P., Würdinger, T., Dekker, H., Joore, J., van Dijk, E., Quax, W.J., Peters, G.J., de Jong, S., et al. (2012). Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3-dependent invasion in resistant non-small cell lung cancer cells. J. Cell Sci. 125, 4651–4661.CrossrefGoogle Scholar

  • Baader, E., Toloczko, A., Fuchs, U., Schmid, I., Beltinger, C., Ehrhardt, H., Debatin, K.M., and Jeremias, I. (2005). Tumor necrosis factor-related apoptosis-inducing ligand-mediated proliferation of tumor cells with receptor-proximal apoptosis defects. Cancer Res. 65, 7888–7895.PubMedGoogle Scholar

  • Barnhart, B.C., Legembre, P., Pietras, E., Bubici, C., Franzoso, G., and Peter M.E. (2004). CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 23, 3175–3185.CrossrefGoogle Scholar

  • Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A.I., Martínez, C.M., Amores-Iniesta, J., Compan, V., Barberà-Cremades, M., Yagüe, J., Ruiz-Ortiz, E., Antón, J., et al. (2014). The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15, 738–748.CrossrefGoogle Scholar

  • Berg, D., Stühmer, T., Siegmund, D., Müller, N., Giner, T., Dittrich-Breiholz, O., Kracht, M., Bargou, R., and Wajant, H. (2009). Oligomerized tumor necrosis factor-related apoptosis inducing ligand strongly induces cell death in myeloma cells, but also activates proinflammatory signaling pathways. FEBS J. 276, 6912–6927.Google Scholar

  • Brennan, F.M. and McInnes, I.B. (2008). Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest. 118, 3537–3545.CrossrefGoogle Scholar

  • Cai, Z., Jitkaew, S., Zhao, J., Chiang, H.C., Choksi, S., Liu, J., Ward, Y., Wu, L.G, and Liu, Z.G. (2014). Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55–65.PubMedGoogle Scholar

  • Chen, G.Y. and Nuñez, G. (2010). Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837.PubMedCrossrefGoogle Scholar

  • Chen, L., Park, S.M, Tumanov, A.V., Hau, A., Sawada, K., Feig, C., Turner, J.R., Fu, Y.X., Romero, I.L., Lengyel, E., et al. (2010a). CD95 promotes tumour growth. Nature 465, 492–496.Google Scholar

  • Chen, L., Park, S.M., Tumanov, A., Hau, A., Sawada, K., Feig, C., Turner, J., Fu, Y.X., Romeo, I., Lengyel, E., et al. (2010b). CD95 promotes tumour growth. Nature 465, 492–496.Google Scholar

  • Chen, X., Li, W., Ren, J., Huang, D., He, W.T., Song, Y., Yang, C., Li, W., Zheng, X., Chen, P., et al. (2014). Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105–121.CrossrefPubMedGoogle Scholar

  • Cho, Y.S., Challa, S., Moquin, D., Genga, R., Ray, T.D., Guildford, M., and Chan, F.K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123.Google Scholar

  • Choi, C., Xu, X., Oh, J.W., Lee, S.J., Gillespie, G.Y., Park, H., Jo, H., and Benveniste, E.N. (2001). Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Cancer Res. 61, 3084–3091.Google Scholar

  • Cohen, I., Rider, P., Carmi, Y., Braiman, A., Dotan, S., White, M.R., Voronov, E., Martin, M.U., Dinarello, C.A., and Aptea, R.N. (2010). Differential release of chromatin-bound IL-1α discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc. Natl. Acad. Sci. USA 107, 2574–2579.Google Scholar

  • Croft, M., Duan, W., Choi, H., Eun, S.Y., Madireddi, S., and Mehta, A. (2011). TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol. Trends Immunol. 33, 144–152.Google Scholar

  • Cullen, S.P., Henry, C.M., Kearney, C.J., Logue, S.E., Feoktistova, M., Tynan, G.A., Lavelle, E.C., Leverkus, M., and Martin S.J. (2013). Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol. Cell 49, 1034–1048.Google Scholar

  • Dickens, L.S., Boyd, R.S., Jukes-Jones, R., Hughes, M.A., Robinson, G.L., Fairall, L., Schwabe, J.W., Cain, K., and Macfarlane, M. (2012). A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol. Cell 47, 291–305.PubMedGoogle Scholar

  • Duprez, L., Takahashi, N., Van Hauwermeiren, F., Vandendriessche, B., Goossens, V., Vanden Berghe, T., Declercq, W., Libert, C., Cauwels, A., and Vandenabeele, P. (2011). RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity. 35, 908–918.CrossrefGoogle Scholar

  • Ehrhardt, H., Fulda, S., Schmid, I., Hiscott, J., Debatin, K.M., and Jeremias, I. (2003). TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-κB. Oncogene 22, 3842–3852.PubMedCrossrefGoogle Scholar

  • Esche, C., Stellato, C., and Beck, L.A. (2005). Chemokines: Key Players in Innate and Adaptive Immunity. J. Inv. Derm. 125, 615–628.Google Scholar

  • Falschlehner, C., Schaefer, U., and Walczak, H. (2009). Following TRAIL’s path in the immune system. Immunology 127, 145–154.Google Scholar

  • Farley, S.M., Dotson, A.D., Purdy, D.E., Sundholm, A.J., Schneider, P., Magun, B.E., and Iordanov, M.S. (2006). Fas ligand elicits a caspase-independent proinflammatory response in human keratinocytes: implications for dermatitis. J. Invest. Dermatol. 126, 2438–2451.CrossrefGoogle Scholar

  • Franklin, B.S., Bossaller, L., De Nardo, D., Ratter, J.M., Stutz, A., Engels, G., Brenker, C., Nordhoff, M., Mirandola, S.R., Al-Amoudi, A., et al. (2014). The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737.CrossrefGoogle Scholar

  • Gallucci, S., Lolkema, M., and Matzinger, P. (1999). Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255.CrossrefPubMedGoogle Scholar

  • Garlanda, C., Dinarello, C.A., and Mantovani, A. (2013). The interleukin-1 family: back to the future. Immunity 39, 1003–1018.CrossrefPubMedGoogle Scholar

  • Gonzalvez, F., Lawrence, D., Yang, B., Yee, S., Pitti, R., Marsters, S., Pham, V.C., Stephan, J.P., Lill, J., and Ashkenazi, A. (2012). TRAF2 Sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer. Mol. Cell 48, 888–899.Google Scholar

  • He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111.Google Scholar

  • Hoogwater, F.J., Nijkamp, M.W., Smakman, N., Steller, E.J, Emmink, B.L., Westendorp, B.F., Raats, D.A., Sprick, M.R., Schaefer, U., Van Houdt, W.J., et al. (2010). Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 138, 2357–2367.Google Scholar

  • Kaczmarek, A., Vandenabeele, P., and Krysko D.V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223.Google Scholar

  • Kavuri, S.M., Geserick, P., Berg, D., Dimitrova, D.P., Feoktistova, M., Siegmund, D., Gollnick, H., Neumann, M., Wajant, H., and Leverkus, M. (2011). Cellular FLICE-inhibitory protein (cFLIP). isoforms block CD95- and TRAIL death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signaling complex. J. Biol. Chem. 286, 16631–16646.Google Scholar

  • Kawai, T. and Akira, S. (2007). TLR signalling. Semin. Immunol. 19, 24–32.CrossrefGoogle Scholar

  • Kearney, C.J., Sheridan, C., Cullen, S.P., Tynan, G.A., Logue, S.E., Afonina, I.S., Vucic, D., Lavelle, E.C., and Martin, S.J. (2013). IAPs and their antagonists regulate spontaneous and TNF-induced pro-inflammatory cytokine and chemokine production. J. Biol. Chem. 288, 4878–4890.Google Scholar

  • Kerr, J.F.R., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–275.CrossrefGoogle Scholar

  • Kleber, S., Sancho-Martinez, I., Wiestler, B., Beisel, A., Gieffers, C., Hill, O., Thiemann, M., Mueller, W., Sykora, J., Kuhn, A., et al. (2008). Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13, 235–248.Google Scholar

  • Kovalenko, A. and Wallach, D. (2006). If the prophet does not come to the mountain: dynamics of signaling complexes in NF-κB activation. Mol. Cell 22, 433–436.CrossrefPubMedGoogle Scholar

  • Kroemer, G. and Martin, S.J. (2005). Caspase-independent cell death. Nat. Med. 11, 725–730.CrossrefPubMedGoogle Scholar

  • Lavrik, I.N. and Krammer, P.H. (2012). Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 19, 36–41.Google Scholar

  • Lavrik, I.N., Golks, A., Riess, D., Bentele, M., Eils, R., and Krammer, P.H. (2007). Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1). at low concentrations primarily results in survival signaling. J. Biol. Chem. 282, 13664–13671.Google Scholar

  • Legembre, P., Barnhart, B.C., Zheng, L., Vijayan, S., Straus, S.E., Puck, J., Dale, J.K., Lenardo, M., and Peter, M.E. (2004). Induction of apoptosis and activation of NF-kB by CD95 require different signaling thresholds. EMBO Rep. 5, 1084–1089.Google Scholar

  • Linkermann, A., Bräsen, J.H., Darding, M., Jin, M.K., Sanz, A.B., Heller, J.O., De Zen, F., Weinlich, R., Ortiz, A., Walczak, H., et al. (2013). Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 110, 12024–12029.Google Scholar

  • Lüthi, A.U., Cullen, S.P., McNeela, E.A., Duriez, P.J., Afonina, I.S., Sheridan, C., Brumatti, G., Taylor, R.C., Kersse, K., Vandenabeele, P., et al. (2009). Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98.CrossrefGoogle Scholar

  • Mahoney, D.J., Cheung, H.H., Mrad, R.L., Plenchette, S., Simard, C., Enwere, E., Arora, V., Mak, T.W., Lacasse, E.C., Waring, J., et al. (2008). Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl. Acad. Sci. USA 105, 11778–11783.Google Scholar

  • Matzinger, P. (1994). Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045.CrossrefPubMedGoogle Scholar

  • Matzinger, P. (2002). The danger model: a renewed sense of self. Science 296, 301–305.Google Scholar

  • Matzinger, P. and Kamala, T. (2011). Tissue-based class control: the other side of tolerance. Nat. Rev. Immun. 11, 221–230.CrossrefGoogle Scholar

  • Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454, 428–435.Google Scholar

  • Miao, E.A., Rajan, J.V., and Aderem, A. (2011). Caspase-1-induced pyroptotic cell death. Immunol. Rev. 243, 206–214.CrossrefGoogle Scholar

  • Mitsiades, C.S., Poulaki, V., Fanourakis, G., Sozopoulos, E., McMillin, D., Wen, Z., Voutsinas, G., Tseleni-Balafouta, S., and Mitsiades, N. (2006). Fas signaling in thyroid carcinomas is diverted from apoptosis to proliferation. Clin. Cancer Res. 12, 3705–3712.CrossrefPubMedGoogle Scholar

  • Mocarski, E.S., Upton, J.W., and Kaiser, W.J. (2012). Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat. Rev. Immunol. 12, 79–88.Google Scholar

  • Moriwaki, K. and Ka-Ming Chan, F. (2013). RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 27, 1640–1649.Google Scholar

  • Nguyen, V., Cudrici, C., Zernetkina, V., Niculescu, F., Rus, H., Drachenberg, C., and Rus, V. (2009). TRAIL, DR4 and DR5 are upregulated in kidneys from patients with lupus nephritis and exert proliferative and proinflammatory effects. Clin. Immunol. 132, 32–42.Google Scholar

  • O’Donnell, M.A., Perez-Jimenez, E., Oberst, A., Ng, A., Massoumi, R., Xavier, R., Green, D.R., and Ting, A.T. (2011). Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 13, 1437–1442.CrossrefGoogle Scholar

  • Ofengeim, D. and Yuan, J. (2013). Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 14, 727–736.Google Scholar

  • Park, D.R., Thomsen, A.R., Frevert, C.W., Pham, U., Skerrett, S.J., Kiener, P.A., and Liles, W.C. (2003). Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J. Immunol. 170, 6209–6216.Google Scholar

  • Peter, M.E. and Krammer, P.H. (2009). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26–35.Google Scholar

  • Peter, M.E., Budd, R.C., Desbarats, J., Hedrick, S.M., Hueber, A.-O., Newell, M.K., Owen, L.B., Pope, R.M., Tschopp, J., Wajant, H., et al. (2007). The CD95 receptor: Apoptosis revisited. Cell 129, 447–450.Google Scholar

  • Rescigno, M., Piguet, V., Valzasina, B., Lens, S., Zubler, R., French, L., Kindler, V., Tschopp, J., and Ricciardi-Castagnoli, P. (2000). Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J. Exp. Med. 192, 1661–1668.Google Scholar

  • Robinson, N., McComb, S., Mulligan, R., Dudani, R., Krishnan, L, and Sad, S. (2012). Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 13, 954–962.CrossrefGoogle Scholar

  • Shi, Y., Evans, J.E., and Rock, K.L. (2003). Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521.Google Scholar

  • Sims, J.E. and Smith, D.E. (2010). The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89–102.PubMedGoogle Scholar

  • Slee, E.A., Adrain, C., and Martin, S.J. (1999). Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ. 6, 1067–1074.PubMedCrossrefGoogle Scholar

  • Strasser, A., Jost, P.J., and Nagata, S. (2009). The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192.Google Scholar

  • Sun, L. Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W, Lei, X., et al. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227.Google Scholar

  • Taylor, R.C., Cullen, S.P., and Martin, S.J. (2008). Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell. Biol. 9, 231–241.CrossrefPubMedGoogle Scholar

  • Trauzold, A., Siegmund, D., Schniewind, B., Sipos, B., Egberts, J., Zorenkov, D., Emme, D., Röder, C., Kalthoff, H., and Wajant, H. (2006). TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25, 7434–7439.PubMedCrossrefGoogle Scholar

  • Walczak, H. (2011). TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol. Rev. 244, 9–28.Google Scholar

  • Wertz, I.E. and Dixit, V.M. (2008). Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev. 19, 313–324.Google Scholar

  • Wilson, N.S., Dixit, V., and Ashkenazi, A. (2009). Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol. 10, 348–355.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Seamus J. Martin, Cellular Biotechnology Laboratory, Saint-Petersburg State Institute of Technology, Moskovskii prospekt, St. Petersburg, Russia; and Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland, e-mail:

Received: 2014-03-13

Accepted: 2014-08-01

Published Online: 2014-08-05

Published in Print: 2014-10-01

Citation Information: Biological Chemistry, Volume 395, Issue 10, Pages 1163–1171, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0164.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

D. B. Kiselevsky
Biochemistry (Moscow), 2020, Volume 85, Number 2, Page 131
M. Billah, A. Ridiandries, B. S. Rayner, U. K. Allahwala, A. Dona, L. M. Khachigian, and R. Bhindi
Basic Research in Cardiology, 2020, Volume 115, Number 1
Johanna Wall, Sriveena Naganathar, Banjerd Praditsuktavorn, Oscar F. Bugg, Simon McArthur, Christoph Thiemermann, Jordi L. Tremoleda, and Karim Brohi
Frontiers in Immunology, 2019, Volume 10
Adam D. Werts, William B. Fulton, Mitchell R. Ladd, Ali Saad-Eldin, Yue X. Chen, Mark L. Kovler, Hongpeng Jia, Emilyn C. Banfield, Rachael Buck, Karen Goerhing, Thomas Prindle, Sanxia Wang, Qinjie Zhou, Peng Lu, Yukihiro Yamaguchi, Chhinder P. Sodhi, and David J. Hackam
Cellular and Molecular Gastroenterology and Hepatology, 2019
Arpan Pradhan, Anuradha Kumari, Rohit Srivastava, and Dulal Panda
ACS Applied Bio Materials, 2019
Mitchel J. R. Ruigrok, Jasmine Tomar, Henderik W. Frijlink, Barbro N. Melgert, Wouter L. J. Hinrichs, and Peter Olinga
Scientific Reports, 2019, Volume 9, Number 1
Mahmoud Abdelbary, Olga Rafikova, Ellen E. Gillis, Jacqueline B. Musall, Babak Baban, Paul M. O’Connor, Michael W. Brands, and Jennifer C. Sullivan
Hypertension, 2019
Jennifer R. King, Melissa L. Wilson, Szabolcs Hetey, Peter Kiraly, Koji Matsuo, Antonio V. Castaneda, Eszter Toth, Tibor Krenacs, Petronella Hupuczi, Paulette Mhawech-Fauceglia, Andrea Balogh, Andras Szilagyi, Janos Matko, Zoltan Papp, Lynda D. Roman, Victoria K. Cortessis, and Nandor Gabor Than
International Journal of Molecular Sciences, 2019, Volume 20, Number 20, Page 4999
Mincong Huang, Jie Su, Zhaohuan Lou, Feng Xie, Wei Pan, Zhengbiao Yang, Liqiang Gu, Fang Xie, Zhiwei Xu, Lili Zhang, Fang Liu, Huimin Lai, Lijiang Zhang, and Nengming Lin
Toxicology Mechanisms and Methods, 2019, Page 1
Jennifer Kay, Elina Thadhani, Leona Samson, and Bevin Engelward
DNA Repair, 2019, Page 102673
Douglas R. Green
Cell, 2019, Volume 177, Number 5, Page 1094
Moustafa R. K. Ali, Yue Wu, and Mostafa A. El-Sayed
The Journal of Physical Chemistry C, 2019, Volume 123, Number 25, Page 15375
Na Li, GuoJing Qu, JingNa Xue, Xiao Li, Xuan Zhao, YeHao Yan, DongFang Gao, Lu Zhang, Peng Wang, Ming Zhang, BaoXiang Zhao, JunYing Miao, and ZhaoMin Lin
Bioorganic & Medicinal Chemistry, 2019, Volume 27, Number 13, Page 2845
Somayeh Handali, Eskandar Moghimipour, Maryam Kouchak, Zahra Ramezani, Mohsen Amini, Kambiz Ahmadi Angali, Sadegh Saremy, Farid Abedin Dorkoosh, and Mohsen Rezaei
Life Sciences, 2019, Volume 227, Page 39
Louis Tong, Eri Matsuura, Miki Takahashi, Takashi Nagano, and Kouichi Kawazu
Current Eye Research, 2019, Volume 44, Number 8, Page 856
Elisa Piscianz, Liza Vecchi Brumatti, Alberto Tommasini, and Annalisa Marcuzzi
Neural Regeneration Research, 2019, Volume 14, Number 4, Page 582
Agnieszka Rojewska, Anna Karewicz, Marta Baster, Mateusz Zając, Karol Wolski, Mariusz Kępczyński, Szczepan Zapotoczny, Krzysztof Szczubiałka, and Maria Nowakowska
Cellulose, 2018
Ying Hua, Kaina Yan, and Chengsong Wan
Frontiers in Microbiology, 2018, Volume 9
Soo Jeong Park, Jeong Mi Kim, Jihyo Kim, Jaehark Hur, Sun Park, Kyongmin Kim, Ho-Joon Shin, and Yong-Joon Chwae
Proceedings of the National Academy of Sciences, 2018, Page 201811432
Somayeh Handali, Eskandar Moghimipour, Mohsen Rezaei, Zahra Ramezani, Maryam Kouchak, Mohsen Amini, Kambiz Ahmadi Angali, Sadegh Saremy, and Farid Abedin Dorkoosh
Biomedicine & Pharmacotherapy, 2018, Volume 108, Page 1259
Robert F. Schwabe and Tom Luedde
Nature Reviews Gastroenterology & Hepatology, 2018
Kathleen Nudel, Paola Massari, Caroline A. Genco, and R. P. Morrison
Infection and Immunity, 2015, Volume 83, Number 9, Page 3410
Somayeh Handali, Eskandar Moghimipour, Mohsen Rezaei, Sadegh Saremy, and Farid Abedin Dorkoosh
International Journal of Biological Macromolecules, 2018
Tia S. Jarvis, Felicia M. Roland, Kyle M. Dubiak, Paul W. Huber, and Bradley D. Smith
Journal of Materials Chemistry B, 2018
Huifang Wu, Jian Liu, Xiaofeng Huang, Lili Pian, Qianqian Cheng, Qingyang Wang, Min Zhao, Zhou Lin, Beifen Shen, Jiyan Zhang, Shulian Li, and Jing Wang
Molecular and Cellular Biochemistry, 2018
Magdalena Alev, Laura Egenberger, Laura Mühleisen, Bianca Weigel, Benjamin Frey, Ralf P. Friedrich, Marina Pöttler, Christoph Alexiou, and Christina Janko
Journal of Controlled Release, 2018
Manli Yang, Hassan Ahmed, Weidong Wu, Bijie Jiang, and Zhenquan Jia
BioMed Research International, 2018, Volume 2018, Page 1
William D. McCaig, Payal S. Patel, Sergey A. Sosunov, Nicole L. Shakerley, Tori A. Smiraglia, Miranda M. Craft, Katharine M. Walker, Matthew A. Deragon, Vadim S. Ten, and Timothy J. LaRocca
Cell Death Discovery, 2018, Volume 4, Number 1
Tomoko Ohashi, Masaki Kato, Akihiro Yamasaki, Akifumi Kuwano, Hideo Suzuki, Motoyuki Kohjima, and Yoshihiro Ogawa
Food and Chemical Toxicology, 2018
Yuan-Yuan Yuan, Ke-Xin Xie, Sha-Long Wang, and Lian-Wen Yuan
Gastroenterology Report, 2018
Sonia Emanuele, Elisabetta Oddo, Antonella D’Anneo, Antonietta Notaro, Giuseppe Calvaruso, Marianna Lauricella, and Michela Giuliano
Rendiconti Lincei. Scienze Fisiche e Naturali, 2018
Elham Zeinizade, Mousa Tabei, Ali Shakeri-Zadeh, Habib Ghaznavi, Neda Attaran, Ali Komeili, Behafarid Ghalandari, Shayan Maleki, and S. Kamran Kamrava
Artificial Cells, Nanomedicine, and Biotechnology, 2018, Page 1
Laura Florez-Sampedro, Shanshan Song, and Barbro N. Melgert
Regeneration, 2018
Hui Han, Jie Yin, Bin Wang, Xingguo Huang, Jiming Yao, Jie Zheng, Wenjun Fan, Tiejun Li, and Yulong Yin
Scientific Reports, 2018, Volume 8, Number 1
Liang Guo, Peng Zhang, Zhimin Chen, Houjun Xia, Siming Li, Yanqiao Zhang, Sune Kobberup, Weiping Zou, and Jiandie D. Lin
Journal of Clinical Investigation, 2017
G. Morris, A. J. Walker, M. Berk, M. Maes, and B. K. Puri
Molecular Neurobiology, 2017
Brandon C. Leonard and Daniel E. Johnson
Advances in Biological Regulation, 2017
Nicole S. Klee, Cameron G. McCarthy, Patricia Martinez-Quinones, and R. Clinton Webb
Therapeutic Advances in Cardiovascular Disease, 2017, Page 175394471772914
Jan Potempa, Piotr Mydel, and Joanna Koziel
Nature Reviews Rheumatology, 2017
Molecular Medicine Reports, 2016, Volume 13, Number 4, Page 3115
D Listyarifah, A Al-Samadi, A Salem, A Syaify, T Salo, T Tervahartiala, D Grenier, DC Nordström, T Sorsa, and M Ainola
Oral Diseases, 2017
Cameron G. McCarthy, Camilla F. Wenceslau, Styliani Goulopoulou, Safia Ogbi, Babak Baban, Jennifer C. Sullivan, Takayuki Matsumoto, and R. Clinton Webb
Cardiovascular Research, 2015, Volume 107, Number 1, Page 119
Si Ming Man, Rajendra Karki, and Thirumala-Devi Kanneganti
Immunological Reviews, 2017, Volume 277, Number 1, Page 61
Taylor S. Cohen, Omari Jones-Nelson, Meghan Hotz, Lily Cheng, Lloyd S. Miller, JoAnn Suzich, C. Kendall Stover, and Bret R. Sellman
Scientific Reports, 2016, Volume 6, Number 1
Jérémie Gautheron, Mihael Vucur, Anne T. Schneider, Ilenia Severi, Christoph Roderburg, Sanchari Roy, Matthias Bartneck, Peter Schrammen, Mauricio Berriel Diaz, Josef Ehling, Felix Gremse, Felix Heymann, Christiane Koppe, Twan Lammers, Fabian Kiessling, Niels Van Best, Oliver Pabst, Gilles Courtois, Andreas Linkermann, Stefan Krautwald, Ulf P. Neumann, Frank Tacke, Christian Trautwein, Douglas R. Green, Thomas Longerich, Norbert Frey, Mark Luedde, Matthias Bluher, Stephan Herzig, Mathias Heikenwalder, and Tom Luedde
Nature Communications, 2016, Volume 7, Page 11869
Moustafa R.K. Ali, Hala R. Ali, Carl R. Rankin, and Mostafa A. El-Sayed
Biomaterials, 2016, Volume 102, Page 1
Zhi Pan, Yingcai Niu, Yini Liang, Xiaojie Zhang, and Miaoxian Dong
Neurotoxicity Research, 2016, Volume 30, Number 3, Page 453
Johanna M. Louhimo, Michael L. Steer, and George Perides
Cellular and Molecular Gastroenterology and Hepatology, 2016, Volume 2, Number 4, Page 519
Francis M. Hughes, Hayden M. Hill, Case M. Wood, Andrew T. Edmondson, Aliya Dumas, Wen-Chi Foo, James M. Oelsen, Goran Rac, and J. Todd Purves
The Journal of Urology, 2016, Volume 195, Number 5, Page 1598
Tasha L. McDonald, Arthur Y. Hung, Charles R. Thomas, and Lisa J. Wood
Radiation Research, 2016, Volume 185, Number 1, Page 4
Si Ming Man and Thirumala-Devi Kanneganti
Nature Reviews Immunology, 2015, Volume 16, Number 1, Page 7
H Zhao, T Jaffer, S Eguchi, Z Wang, A Linkermann, and D Ma
Cell Death and Disease, 2015, Volume 6, Number 11, Page e1975
Stefano Pizzirani
Veterinary Clinics of North America: Small Animal Practice, 2015, Volume 45, Number 6, Page 1127
Katsuhiro Sasaki and Kazuhiro Iwai
Immunological Reviews, 2015, Volume 266, Number 1, Page 175
Saurabh Chatterjee and Suvarthi Das
Oxidative Medicine and Cellular Longevity, 2015, Volume 2015, Page 1
Wei Zhang, Xiaoyan Zhou, Tao Liu, Dong Ma, and Wei Xue
J. Mater. Chem. B, 2015, Volume 3, Number 10, Page 2127
Stefan Koudstaal, Martinus I. F. J. Oerlemans, Tycho I. G. Van der Spoel, Aafke W. F. Janssen, Imo E. Hoefer, Pieter A. Doevendans, Joost P. G. Sluijter, and Steven A. J. Chamuleau
European Journal of Clinical Investigation, 2015, Volume 45, Number 2, Page 150

Comments (0)

Please log in or register to comment.
Log in