Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 395, Issue 10

Issues

Specific targeting of human caspases using designed ankyrin repeat proteins

Andreas Flütsch
  • Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thilo Schroeder
  • Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonas Barandun
  • Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafael Ackermann
  • Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Bühlmann
  • Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markus G. Grütter
  • Corresponding author
  • Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-05 | DOI: https://doi.org/10.1515/hsz-2014-0173

Abstract

Caspases play important roles in cell death, differentiation, and proliferation. Due to their high homology, especially of the active site, specific targeting of a particular caspase using substrate analogues is very difficult. Although commercially available small molecules based on peptides are lacking high specificity due to overlapping cleavage motives between different caspases, they are often used as specific tools. We have selected designed ankyrin repeat proteins (DARPins) against human caspases 1–9 and identified high-affinity binders for the targeted caspases, except for caspase 4. Besides previously reported caspase-specific DARPins, we generated novel DARPins (D1.73, D5.15, D6.11, D8.1, D8.4, and D9.2) and confirmed specificity for caspases 1, 5, 6, and 8 using a subset of caspase family members. In addition, we solved the crystal structure of caspase 8 in complex with DARPin D8.4. This binder interacts with non-conserved residues on the large subunit, thereby explaining its specificity. Structural analysis of this and other previously published crystal structures of caspase/DARPin complexes depicts two general binding areas either involving active site forming loops or a surface area laterally at the large subunit of the enzyme. Both surface areas involve non-conserved surface residues of caspases.

This article offers supplementary material which is provided at the end of the article.

Keywords: apoptosis; cell death; DARPins; specific caspase targeting; X-ray crystallography

References

  • Amstutz, P., Binz, H.K., Parizek, P., Stumpp, M.T., Kohl, A., Grütter, M.G., Forrer, P., and Plückthun, A. (2005). Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280, 24715–24722.Google Scholar

  • Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P., and Plückthun, A. (2003). Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503.Google Scholar

  • Binz, H.K., Amstutz, P., Kohl, A., Stumpp, M.T., Briand, C., Forrer, P., Grütter, M.G., and Plückthun, A. (2004). High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–582.Google Scholar

  • Blanchard, H., Kodandapani, L., Mittl, P.R., Marco, S.D., Krebs, J.F., Wu, J.C., Tomaselli, K.J., and Grütter, M.G. (1999). The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure 7, 1125–1133.CrossrefGoogle Scholar

  • Boucher, D., Blais, V., and Denault, J.B. (2012). Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc. Natl. Acad. Sci. USA 109, 5669–5674.Google Scholar

  • Bravman, T., Bronner, V., Lavie, K., Notcovich, A., Papalia, G.A., and Myszka, D.G. (2006). Exploring “one-shot” kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. Anal. Biochem. 358, 281–288.Google Scholar

  • Duarte, J.M., Srebniak, A., Schärer, M.A., and Capitani, G. (2012). Protein interface classification by evolutionary analysis. BMC Bioinform. 13, 334.Google Scholar

  • Favaloro, B., Allocati, N., Graziano, V., Di Ilio, C., and De Laurenzi, V. (2012). Role of apoptosis in disease. Aging 4, 330–349.Google Scholar

  • Flütsch, A., Ackermann, R., Schroeder, T., Lukarska, M., Hausammann, G.J., Weinert, C., Briand, C., and Grütter, M.G. (2014). Combined inhibition of caspase 3 and caspase 7 by two highly selective DARPins slows down cellular demise. Biochem. J. 461, 279–290.Web of ScienceGoogle Scholar

  • Fuentes-Prior, P. and Salvesen, G.S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384, 201–232.Google Scholar

  • Grütter, M.G. (2000). Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10, 649–655.Google Scholar

  • Hanes, J. and Plückthun, A. (1997). In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.Google Scholar

  • Hardy, J.A., Lam, J., Nguyen, J.T., O’Brien, T., and Wells, J.A. (2004). Discovery of an allosteric site in the caspases. Proc. Natl. Acad. Sci. USA 101, 12461–12466.CrossrefGoogle Scholar

  • Kabsch, W. (2010). Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144.Web of ScienceGoogle Scholar

  • McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674.CrossrefGoogle Scholar

  • McStay, G.P., Salvesen, G.S., and Green, D.R. (2008). Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ. 15, 322–331.Web of ScienceGoogle Scholar

  • Merz, T., Wetzel, S.K., Firbank, S., Plückthun, A., Grütter, M.G., and Mittl, P.R. (2008). Stabilizing ionic interactions in a full-consensus ankyrin repeat protein. J. Mol. Biol. 376, 232–240.Web of ScienceGoogle Scholar

  • Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255.Google Scholar

  • Rohn, T.T. (2010). The role of caspases in Alzheimer’s disease; potential novel therapeutic opportunities. Apoptosis 15, 1403–1409.Web of SciencePubMedCrossrefGoogle Scholar

  • Roschitzki-Voser, H., Schroeder, T., Lenherr, E.D., Frölich, F., Schweizer, A., Donepudi, M., Ganesan, R., Mittl, P.R., Baici, A., and Grütter, M.G. (2012). Human caspases in vitro: expression, purification and kinetic characterization. Protein Expr. Purif. 84, 236–246.Google Scholar

  • Salvesen, G.S. and Dixit, V.M. (1999). Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967.Google Scholar

  • Schroeder, T., Barandun, J., Flütsch, A., Briand, C., Mittl, P.R., and Grütter, M.G. (2013). Specific inhibition of caspase-3 by a competitive DARPin: molecular mimicry between native and designed inhibitors. Structure 21, 277–289.CrossrefGoogle Scholar

  • Schweizer, A., Roschitzki-Voser, H., Amstutz, P., Briand, C., Gulotti-Georgieva, M., Prenosil, E., Binz, H.K., Capitani, G., Baici, A., Plückthun, A., et al. (2007). Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15, 625–636.CrossrefPubMedGoogle Scholar

  • Seeger, M.A., Zbinden, R., Flütsch, A., Gutte, P.G., Engeler, S., Roschitzki-Voser, H., and Grütter, M.G. (2013). Design, construction, and characterization of a second-generation DARPin library with reduced hydrophobicity. Protein Sci. 22, 1239–1257.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Sennhauser, G., Amstutz, P., Briand, C., Storchenegger, O., and Grütter, M.G. (2007). Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 5, e7.Web of SciencePubMedGoogle Scholar

  • Stefan, N., Martin-Killias, P., Wyss-Stoeckle, S., Honegger, A., Zangemeister-Wittke, U., and Plückthun, A. (2011). DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. J. Mol. Biol. 413, 826–843.Web of ScienceGoogle Scholar

  • Steiner, D., Forrer, P., and Plückthun, A. (2008). Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J. Mol. Biol. 382, 1211–1227.Web of ScienceGoogle Scholar

  • Studier, F.W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234.Google Scholar

  • Taylor, R.C., Cullen, S.P., and Martin, S.J. (2008). Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241.Web of ScienceCrossrefPubMedGoogle Scholar

  • Watt, W., Koeplinger, K.A., Mildner, A.M., Heinrikson, R.L., Tomasselli, A.G., and Watenpaugh, K.D. (1999). The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure 7, 1135–1143.PubMedGoogle Scholar

  • Zahnd, C., Amstutz, P., and Plückthun, A. (2007). Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods 4, 269–279.CrossrefGoogle Scholar

About the article

Corresponding author: Markus G. Grütter, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, e-mail:

aThese authors contributed equally to this work.

bPresent address: University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0629, USA.

cPresent address: Nextech Invest Ltd., Scheuchzerstrasse 35, 8006 Zurich, Switzerland.

dPresent address: The Rockefeller University, Laboratory of Protein and Nucleic Acid Chemistry, 1230 York Avenue, New York, NY 10065, USA.


Received: 2014-03-24

Accepted: 2014-08-05

Published Online: 2014-09-05

Published in Print: 2014-10-01


Citation Information: Biological Chemistry, Volume 395, Issue 10, Pages 1243–1252, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0173.

Export Citation

©2014 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Melissa R. Ryerson, Monique M. Richards, Marc Kvansakul, Christine J. Hawkins, Joanna L. Shisler, and Rozanne M. Sandri-Goldin
Journal of Virology, 2017, Volume 91, Number 23
[2]
Asim Azhar, Ejaj Ahmad, Qamar Zia, Mohd. Ahmar Rauf, Mohammad Owais, and Ghulam Md Ashraf
International Journal of Biological Macromolecules, 2017, Volume 102, Page 630
[3]
Katja Škrlec, Borut Štrukelj, and Aleš Berlec
Trends in Biotechnology, 2015, Volume 33, Number 7, Page 408

Comments (0)

Please log in or register to comment.
Log in