Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 395, Issue 11

Issues

The epigenetic tracks of aging

Carola Ingrid Weidner
  • Corresponding author
  • Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, D-52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Wagner
  • Corresponding author
  • Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, D-52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-02 | DOI: https://doi.org/10.1515/hsz-2014-0180

Abstract

Aging is associated with the deterioration of biological functions, which is either caused by accumulation of random defects or mediated by a controlled process. This article provides an overview of age-associated epigenetic alterations in the histone code, DNA-methylation (DNAm) pattern, and chromatin structure. In particular, age-related DNAm changes are highly reproducible at specific sites in the genome. The DNAm level at few CpGs facilitates estimation of chronological age and there is evidence that such predictions are indicative for biological age. Overall, aging appears to be associated with a tightly regulated epigenetic process, but the underlying mechanism remains to be elucidated.

Keywords: aging; biological age; chromatin; DNA-methylation; histone; predictor

References

  • Alisch, R.S., Barwick, B.G., Chopra, P., Myrick, L.K., Satten, G.A., Conneely, K.N., and Warren, S.T. (2012). Age-associated DNA methylation in pediatric populations. Genome Res. 22, 623–632.PubMedCrossrefGoogle Scholar

  • Armstrong, D.A., Lesseur, C., Conradt, E., Lester, B.M., and Marsit, C.J. (2014). Global and gene-specific DNA methylation across multiple tissues in early infancy: implications for children’s health research. FASEB J. 28, 2088–2097.CrossrefGoogle Scholar

  • Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407–412.Google Scholar

  • Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J.M., Delano, D., Zhang, L., Schroth, G.P., Gunderson, K.L., et al. (2011). High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295.PubMedCrossrefGoogle Scholar

  • Bickmore, W.A. and van Steensel, B. (2013). Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284.Google Scholar

  • Bocker, M.T., Hellwig, I., Breiling, A., Eckstein, V., Ho, A.D., and Lyko, F. (2011). Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117, e182–e189.CrossrefGoogle Scholar

  • Bocklandt, S., Lin, W., Sehl, M.E., Sanchez, F.J., Sinsheimer, J.S., Horvath, S., and Vilain, E. (2011). Epigenetic predictor of age. PLoS One 6, e14821.Google Scholar

  • Bork, S., Pfister, S., Witt, H., Horn, P., Korn, B., Ho, A.D., and Wagner, W. (2010). DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9, 54–63.PubMedCrossrefGoogle Scholar

  • Boyd-Kirkup, J.D., Green, C.D., Wu, G., Wang, D., and Han, J.D. (2013). Epigenomics and the regulation of aging. Epigenomics 5, 205–227.CrossrefGoogle Scholar

  • Brown, K., Xie, S., Qiu, X., Mohrin, M., Shin, J., Liu, Y., Zhang, D., Scadden, D.T., and Chen, D. (2013). SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319–327.CrossrefGoogle Scholar

  • Cahan, P. and Daley, G.Q. (2013). Origins and implications of pluripotent stem cell variability and heterogeneity. Nat. Rev. Mol. Cell Biol. 14, 357–368.PubMedCrossrefGoogle Scholar

  • Chen, H., Gu, X., Su, I.H., Bottino, R., Contreras, J.L., Tarakhovsky, A., and Kim, S.K. (2009). Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985.Google Scholar

  • Christensen, B.C., Houseman, E.A., Marsit, C.J., Zheng, S., Wrensch, M.R., Wiemels, J.L., Nelson, H.H., Karagas, M.R., Padbury, J.F., Bueno, R., et al. (2009). Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 5, e1000602.CrossrefGoogle Scholar

  • Cruickshanks, H.A., McBryan, T., Nelson, D.M., Vanderkraats, N.D., Shah, P.P., van, T.J., Singh, R.T., Brock, C., Donahue, G., Dunican, D.S., et al. (2013). Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506.CrossrefPubMedGoogle Scholar

  • Day, K., Waite, L.L., Thalacker-Mercer, A., West, A., Bamman, M.M., Brooks, J.D., Myers, R.M., and Absher, D. (2013). Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 14, R102.CrossrefGoogle Scholar

  • Dhawan, S., Tschen, S.I., and Bhushan, A. (2009). Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes Dev. 23, 906–911.Google Scholar

  • Feng, Q., Lu, S.J., Klimanskaya, I., Gomes, I., Kim, D., Chung, Y., Honig, G.R., Kim, K.S., and Lanza, R. (2010). Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28, 704–712.CrossrefPubMedGoogle Scholar

  • Florath, I., Butterbach, K., Muller, H., Bewerunge-Hudler, M., and Brenner, H. (2014). Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum. Mol. Genet. 23, 1186–1201.CrossrefGoogle Scholar

  • Garagnani, P., Bacalini, M.G., Pirazzini, C., Gori, D., Giuliani, C., Mari, D., Di Blasio, A.M., Gentilini, D., Vitale, G., Collino, S., et al. (2012). Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 11, 1132–1134.CrossrefGoogle Scholar

  • Gautrey, H.E., van Otterdijk, S.D., Cordell, H.J., Mathers, J.C., and Strathdee, G. (2014). DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. FASEB J. 28, 3261–3272.PubMedCrossrefGoogle Scholar

  • Gentilini, D., Mari, D., Castaldi, D., Remondini, D., Ogliari, G., Ostan, R., Bucci, L., Sirchia, S.M., Tabano, S., Cavagnini, F., et al. (2013). Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age (Dordr.) 35, 1961–1973.CrossrefPubMedGoogle Scholar

  • Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.B., Gao, Y., et al. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367.CrossrefPubMedGoogle Scholar

  • Heyn, H., Li, N., Ferreira, H.J., Moran, S., Pisano, D.G., Gomez, A., Diez, J., Sanchez-Mut, J.V., Setien, F., Carmona, F.J., et al. (2012). Distinct DNA methylomes of newborns and centenarians. Proc. Natl. Acad. Sci. USA 109, 10522–10527.CrossrefGoogle Scholar

  • Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biol. 14, R115.CrossrefGoogle Scholar

  • Huidobro, C., Fernandez, A.F., and Fraga, M.F. (2013). Aging epigenetics: causes and consequences. Mol. Aspects Med. 34, 765–781.PubMedCrossrefGoogle Scholar

  • Johansson, A., Enroth, S., and Gyllensten, U. (2013). Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One 8, e67378.Google Scholar

  • Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z., and Cohen, H.Y. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221.Google Scholar

  • Kimura, H. (2013). Histone modifications for human epigenome analysis. J. Hum. Genet. 58, 439–445.CrossrefGoogle Scholar

  • Kirkwood, T.B. (2005). Understanding the odd science of aging. Cell 120, 437–447.CrossrefPubMedGoogle Scholar

  • Koch, C.M. and Wagner, W. (2011). Epigenetic-aging-signature to determine age in different tissues. Aging (Albany, NY) 3, 1018–1027.PubMedGoogle Scholar

  • Koch, C.M., Suschek, C.V., Lin, Q., Bork, S., Goergens, M., Joussen, S., Pallua, N., Ho, A.D., Zenke, M., and Wagner, W. (2011). Specific age-associated DNA methylation changes in human dermal fibroblasts. PLoS One 6, e16679.Google Scholar

  • Koch, C.M., Joussen, S., Schellenberg, A., Lin, Q., Zenke, M., and Wagner, W. (2012). Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell 11, 366–369.PubMedCrossrefGoogle Scholar

  • Koch, C.M., Reck, K., Shao, K., Lin, Q., Joussen, S., Ziegler, P., Walenda, G., Drescher, W., Opalka, B., May, T., et al. (2013). Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res. 23, 248–259.PubMedCrossrefGoogle Scholar

  • Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., it-Hamou, N., Leschik, J., Pellestor, F., Ramirez, J.M., De, V.J., et al. (2011). Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253.CrossrefPubMedGoogle Scholar

  • Larson, K., Yan, S.J., Tsurumi, A., Liu, J., Zhou, J., Gaur, K., Guo, D., Eickbush, T.H., and Li, W.X. (2012). Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8, e1002473.CrossrefGoogle Scholar

  • Lister, R., Pelizzola, M., Kida, Y.S., Hawkins, R.D., Nery, J.R., Hon, G., ntosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73.Google Scholar

  • Liu, L., Cheung, T.H., Charville, G.W., Hurgo, B.M., Leavitt, T., Shih, J., Brunet, A., and Rando, T.A. (2013). Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 4, 189–204.PubMedCrossrefGoogle Scholar

  • Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194–1217.CrossrefGoogle Scholar

  • Maegawa, S., Hinkal, G., Kim, H.S., Shen, L., Zhang, L., Zhang, J., Zhang, N., Liang, S., Donehower, L.A., and Issa, J.P. (2010). Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340.PubMedCrossrefGoogle Scholar

  • Mallon, B.S., Hamilton, R.S., Kozhich, O.A., Johnson, K.R., Fann, Y.C., Rao, M.S., and Robey, P.G. (2014). Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res. 12, 376–386.CrossrefPubMedGoogle Scholar

  • Marion, R.M., Strati, K., Li, H., Tejera, A., Schoeftner, S., Ortega, S., Serrano, M., and Blasco, M.A. (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4, 141–154.PubMedCrossrefGoogle Scholar

  • McClay, J.L., Aberg, K.A., Clark, S.L., Nerella, S., Kumar, G., Xie, L.Y., Hudson, A.D., Harada, A., Hultman, C.M., Magnusson, P.K., et al. (2014). A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum. Mol. Genet. 23, 1175–1185.PubMedGoogle Scholar

  • Meissner, C. and Ritz-Timme, S. (2010). Molecular pathology and age estimation. Forensic Sci. Int. 203, 34–43.CrossrefPubMedGoogle Scholar

  • Pegoraro, G., Kubben, N., Wickert, U., Gohler, H., Hoffmann, K., and Misteli, T. (2009). Ageing-related chromatin defects through loss of the NURD complex. Nat. Cell Biol. 11, 1261–1267.CrossrefPubMedGoogle Scholar

  • Pruitt, K., Zinn, R.L., Ohm, J.E., McGarvey, K.M., Kang, S.H., Watkins, D.N., Herman, J.G., and Baylin, S.B. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2, e40.CrossrefGoogle Scholar

  • Raddatz, G., Hagemann, S., Aran, D., Sohle, J., Kulkarni, P.P., Kaderali, L., Hellman, A., Winnefeld, M., and Lyko, F. (2013). Aging is associated with highly defined epigenetic changes in the human epidermis. Epigenetics & Chromatin 6, 36–48.PubMedCrossrefGoogle Scholar

  • Rai, T.S. and Adams, P.D. (2013). Lessons from senescence: chromatin maintenance in non-proliferating cells. Biochim. Biophys. Acta 1819, 322–331.Google Scholar

  • Rakyan, V.K., Down, T.A., Maslau, S., Andrew, T., Yang, T.P., Beyan, H., Whittaker, P., McCann, O.T., Finer, S., Valdes, A.M., et al. (2010). Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 20, 434–439.PubMedCrossrefGoogle Scholar

  • Rando, T.A. and Chang, H.Y. (2012). Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57.Google Scholar

  • Riedel, C.G., Dowen, R.H., Lourenco, G.F., Kirienko, N.V., Heimbucher, T., West, J.A., Bowman, S.K., Kingston, R.E., Dillin, A., Asara, J.M., et al. (2013). DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat. Cell Biol. 15, 491–501.PubMedCrossrefGoogle Scholar

  • Rohani, L., Johnson, A.A., Arnold, A., and Stolzing, A. (2014). The aging signature: a hallmark of induced pluripotent stem cells? Aging Cell 13, 2–7.CrossrefPubMedGoogle Scholar

  • Romanov, G.A. and Vanyushin, B.F. (1981). Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim. Biophys. Acta 653, 204–218.Google Scholar

  • Sanders, Y.Y., Liu, H., Zhang, X., Hecker, L., Bernard, K., Desai, L., Liu, G., and Thannickal, V.J. (2013). Histone modifications in senescence-associated resistance to apoptosis by oxidative stress. Redox. Biol. 1, 8–16.CrossrefPubMedGoogle Scholar

  • Sarg, B., Koutzamani, E., Helliger, W., Rundquist, I., and Lindner, H.H. (2002). Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J. Biol. Chem. 277, 39195–39201.Google Scholar

  • Satoh, A., Brace, C.S., Rensing, N., Cliften, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430.Google Scholar

  • Scaffidi, P. and Misteli, T. (2005). Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat. Med. 11, 440–445.PubMedCrossrefGoogle Scholar

  • Schellenberg, A., Lin, Q., Schuler, H., Koch, C.M., Joussen, S., Denecke, B., Walenda, G., Pallua, N., Suschek, C.V., Zenke, M., et al. (2011). Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany, NY) 3, 873–888.PubMedGoogle Scholar

  • Shao, K., Koch, C., Gupta, M.K., Lin, Q., Lenz, M., Laufs, S., Denecke, B., Schmidt, M., Linke, M., Hennies, H.C., et al. (2013). Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Mol. Ther. 21, 240–250.CrossrefGoogle Scholar

  • Sharma, A., Diecke, S., Zhang, W.Y., Lan, F., He, C., Mordwinkin, N.M., Chua, K.F., and Wu, J.C. (2013). The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 288, 18439–18447.CrossrefGoogle Scholar

  • Shokhirev, M.N. and Johnson, A.A. (2014). Effects of extrinsic mortality on the evolution of aging: a stochastic modeling approach. PLoS One 9, e86602.Google Scholar

  • Shumaker, D.K., Dechat, T., Kohlmaier, A., Adam, S.A., Bozovsky, M.R., Erdos, M.R., Eriksson, M., Goldman, A.E., Khuon, S., Collins, F.S., et al. (2006). Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA 103, 8703–8708.CrossrefGoogle Scholar

  • Steegenga, W.T., Boekschoten, M.V., Lute, C., Hooiveld, G.J., de Groot, P.J., Morris, T.J., Teschendorff, A.E., Butcher, L.M., Beck, S., and Muller, M. (2014). Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. Age (Dordr.) 36, 1523–1540.Google Scholar

  • Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.A., Jones, D.T., Konermann, C., Pfaff, E., Tonjes, M., Sill, M., Bender, S., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437.Google Scholar

  • Tang, Y., Li, T., Li, J., Yang, J., Liu, H., Zhang, X.J., and Le, W. (2014). Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ. 21, 369–380.CrossrefGoogle Scholar

  • Teschendorff, A.E., Menon, U., Gentry-Maharaj, A., Ramus, S.J., Weisenberger, D.J., Shen, H., Campan, M., Noushmehr, H., Bell, C.G., Maxwell, A.P., et al. (2010). Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446.CrossrefPubMedGoogle Scholar

  • Teschendorff, A.E., West, J., and Beck, S. (2013). Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum. Mol. Genet. 22, R7–R15.Google Scholar

  • Vaskova, E.A., Stekleneva, A.E., Medvedev, S.P., and Zakian, S.M. (2013). “Epigenetic memory” phenomenon in induced pluripotent stem cells. Acta Naturae. 5, 15–21.PubMedGoogle Scholar

  • Volle, C. and Dalal, Y. (2014). Histone variants: the tricksters of the chromatin world. Curr. Opin. Genet. Dev. 25C, 8–14.PubMedCrossrefGoogle Scholar

  • Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., et al. (2008). Replicative senescence of mesenchymal stem cells – a continuous and organized process. PLoS One 5, e2213.Google Scholar

  • Wagner, J.R., Busche, S., Ge, B., Kwan, T., Pastinen, T., and Blanchette, M. (2014). The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 15, R37.CrossrefGoogle Scholar

  • Wang, C.M., Tsai, S.N., Yew, T.W., Kwan, Y.W., and Ngai, S.M. (2010). Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology 11, 87–102.PubMedCrossrefGoogle Scholar

  • Watanabe, K. and Bloch, W. (2013). Histone methylation and acetylation indicates epigenetic change in the aged cochlea of mice. Eur. Arch. Otorhinolaryngol. 270, 1823–1830.PubMedCrossrefGoogle Scholar

  • Weidner, C.I., Lin, Q., Koch, C.M., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D.O., Jockel, K.H., Erbel, R., Muhleisen, T.W., et al. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24.CrossrefGoogle Scholar

  • Xu, Z. and Taylor, J.A. (2014). Genome-wide age-related DNA methylation changes in blood and other tissues relate to histone modification, expression and cancer. Carcinogenesis 35, 356–364.PubMedCrossrefGoogle Scholar

  • Zhang, R., Poustovoitov, M.V., Ye, X., Santos, H.A., Chen, W., Daganzo, S.M., Erzberger, J.P., Serebriiskii, I.G., Canutescu, A.A., Dunbrack, R.L., et al. (2005). Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell 8, 19–30.Google Scholar

  • Zykovich, A., Hubbard, A., Flynn, J.M., Tarnopolsky, M., Fraga, M.F., Kerksick, C., Ogborn, D., MacNeil, L., Mooney, S.D., and Melov, S. (2014). Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell 13, 360–366.PubMedCrossrefGoogle Scholar

About the article

Corresponding authors: Carola Ingrid Weidner and Wolfgang Wagner, Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, D-52074 Aachen, Germany, e-mail: ,


Received: 2014-04-04

Accepted: 2014-06-18

Published Online: 2014-09-02

Published in Print: 2014-11-01


Citation Information: Biological Chemistry, Volume 395, Issue 11, Pages 1307–1314, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0180.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sangkyu Kim, Jennifer Wyckoff, Anne-T Morris, Annemarie Succop, Ally Avery, Glen E. Duncan, and S. Michal Jazwinski
GeroScience, 2018
[2]
Xiaojuan Guo, Xushen Chen, Jie Wang, Zhiyue Liu, Daniel Gaile, Hongmei Wu, Guan Yu, Guangyun Mao, Zuopeng Yang, Zhen Di, Xiuqing Guo, Li Cao, Peiye Chang, Binxian Kang, Jinyu Chen, Wen Gao, and Xuefeng Ren
Environment International, 2018, Volume 119, Page 250
[3]
Miriam G. Jasiulionis
Frontiers in Immunology, 2018, Volume 9
[4]
Jana Naue, Huub C.J. Hoefsloot, Ate D. Kloosterman, and Pernette J. Verschure
Forensic Science International: Genetics, 2018, Volume 33, Page 17
[5]
Noémie Gensous, Maria Giulia Bacalini, Chiara Pirazzini, Elena Marasco, Cristina Giuliani, Francesco Ravaioli, Giacomo Mengozzi, Claudia Bertarelli, Maria Giustina Palmas, Claudio Franceschi, and Paolo Garagnani
Biogerontology, 2017, Volume 18, Number 4, Page 549
[6]
Diogo Vieira da Silva Pellegrina, Patricia Severino, Hermes Vieira Barbeiro, Flávia Maziero Andreghetto, Irineu Tadeu Velasco, Heraldo Possolo de Souza, Marcel Cerqueira César Machado, Eduardo Moraes Reis, Fabiano Pinheiro da Silva, and Cordula M. Stover
PLOS ONE, 2015, Volume 10, Number 6, Page e0128341
[7]
Fabio R. Melo, Ola Wallerman, Aida Paivandy, Gabriela Calounova, Ann-Marie Gustafson, Benjamin R. Sabari, Giuliano Zabucchi, C. David Allis, and Gunnar Pejler
Journal of Allergy and Clinical Immunology, 2017, Volume 140, Number 2, Page 474
[8]
Qiong Lin, Wolfgang Wagner, and John M. Greally
PLOS Genetics, 2015, Volume 11, Number 6, Page e1005334
[9]
Keely L. Szilágyi, Cong Liu, Xu Zhang, Ting Wang, Jeffrey D. Fortman, Wei Zhang, and Joe G.N. Garcia
Translational Research, 2017, Volume 180, Page 12
[10]
Rocio G. Urdinguio, María Isabel Torró, Gustavo F. Bayón, Julio Álvarez-Pitti, Agustín F. Fernández, Pau Redon, Mario F. Fraga, and Empar Lurbe
Journal of Translational Medicine, 2016, Volume 14, Number 1
[11]
Rima Obeid, Ulrich Hübner, Marion Bodis, and Juergen Geisel
NeuroMolecular Medicine, 2016, Volume 18, Number 4, Page 593
[12]
Felix Bormann, Manuel Rodríguez-Paredes, Sabine Hagemann, Himanshu Manchanda, Boris Kristof, Julian Gutekunst, Günter Raddatz, Rainer Haas, Lara Terstegen, Horst Wenck, Lars Kaderali, Marc Winnefeld, and Frank Lyko
Aging Cell, 2016, Volume 15, Number 3, Page 563
[13]
Bernardo J. Krause, José A. Castro-Rodríguez, Ricardo Uauy, and Paola Casanello
Revista Chilena de Pediatría, 2016, Volume 87, Number 1, Page 4
[14]
Wolfgang Wagner, Eduardo Fernandez-Rebollo, and Joana Frobel
Epigenomics, 2016, Volume 8, Number 1, Page 1
[15]
Ronald L. Simons, Man Kit Lei, Steven R.H. Beach, Robert A. Philibert, Carolyn E. Cutrona, Frederick X. Gibbons, and Ashley Barr
Social Science & Medicine, 2016, Volume 150, Page 192
[16]
Peter Stenvinkel, Jeroen P. Kooman, and Paul G. Shiels
Current Opinion in Clinical Nutrition and Metabolic Care, 2016, Volume 19, Number 1, Page 19
[17]
Rafael Fernandes Ferreira, Dorotéia Rossi Silva Souza, and Antonio Soares Souza
Radiology, 2015, Volume 277, Number 1, Page 307
[18]
Nathalie Acevedo, Lovisa E Reinius, Morana Vitezic, Vittorio Fortino, Cilla Söderhäll, Hanna Honkanen, Riitta Veijola, Olli Simell, Jorma Toppari, Jorma Ilonen, Mikael Knip, Annika Scheynius, Heikki Hyöty, Dario Greco, and Juha Kere
Clinical Epigenetics, 2015, Volume 7, Number 1
[19]
Sonja Hänzelmann, Fabian Beier, Eduardo G Gusmao, Carmen M Koch, Sebastian Hummel, Iryna Charapitsa, Sylvia Joussen, Vladimir Benes, Tim H Brümmendorf, George Reid, Ivan G Costa, and Wolfgang Wagner
Clinical Epigenetics, 2015, Volume 7, Number 1, Page 19
[20]
Diddahally Govindaraju, Gil Atzmon, and Nir Barzilai
Applied & Translational Genomics, 2015, Volume 4, Page 23
[21]
C I Weidner, P Ziegler, M Hahn, T H Brümmendorf, A D Ho, P Dreger, and W Wagner
Leukemia, 2015, Volume 29, Number 4, Page 985

Comments (0)

Please log in or register to comment.
Log in