Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 395, Issue 12 (Dec 2014)

Issues

Small membrane proteins – elucidating the function of the needle in the haystack

Grant Kemp
  • Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian Cymer
  • Corresponding author
  • Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-12 | DOI: https://doi.org/10.1515/hsz-2014-0213

Abstract

Membrane proteins are important mediators between the cell and its environment or between different compartments within a cell. However, much less is known about the structure and function of membrane proteins compared to water-soluble proteins. Moreover, until recently a subset of membrane proteins, those shorter than 100 amino acids, have almost completely evaded detection as a result of technical difficulties. These small membrane proteins (SMPs) have been underrepresented in most genomic and proteomic screens of both pro- and eukaryotic cells and, hence, we know much less about their functions in both. Currently, through a combination of bioinformatics, ribosome profiling, and more sensitive proteomics, large numbers of SMPs are being identified and characterized. Herein we describe recent advances in identifying SMPs from genomic and proteomic datasets and describe examples where SMPs have been successfully characterized biochemically. Finally we give an overview of identified functions of SMPs and speculate on the possible roles SMPs play in the cell.

Keywords: AcrZ; KdpF; phospholamban; sORF; transmembrane

References

  • Akin, B.L., Chen, Z., and Jones, L.R. (2010). Superinhibitory phospholamban mutants compete with Ca2+ for binding to SERCA2a by stabilizing a unique nucleotide-dependent conformational state. J. Biol. Chem. 285, 28540–28552.Google Scholar

  • Akin, B.L., Hurley, T.D., Chen, Z., and Jones, L.R. (2013). The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. J. Biol. Chem. 288, 30181–30191.Google Scholar

  • Anbazhagan, V., Cymer, F., and Schneider, D. (2010). Unfolding a transmembrane helix dimer: A FRET study in mixed micelles. Arch. Biochem. Biophys. 495, 159–164.Google Scholar

  • Angermann, B.R., Klauschen, F., Garcia, A.D., Prustel, T., Zhang, F., Germain, R.N., and Meier-Schellersheim, M. (2012). Computational modeling of cellular signaling processes embedded into dynamic spatial contexts. Nat. Methods 9, 283–289.Google Scholar

  • Apaja, P.M. and Lukacs, G.L. (2014). Protein homeostasis at the plasma membrane. Physiol. (Bethesda) 29, 265–277.Google Scholar

  • Asahi, M., Kurzydlowski, K., Tada, M., and MacLennan, D.H. (2002). Sarcolipin inhibits polymerization of phospholamban to induce superinhibition of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs). J. Biol. Chem. 277, 26725–26728.Google Scholar

  • Asahi, M., Sugita, Y., Kurzydlowski, K., De Leon, S., Tada, M., Toyoshima, C., and MacLennan, D.H. (2003). Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc. Natl. Acad. Sci. USA 100, 5040–5045.Google Scholar

  • Babcock, J.J. and Li, M. (2014). Deorphanizing the human transmembrane genome: a landscape of uncharacterized membrane proteins. Acta Pharmacol. Sin. 35, 11–23.Google Scholar

  • Badger, J.H. and Olsen, G.J. (1999). CRITICA: coding region identification tool invoking comparative analysis. Mol. Biol. Evol. 16, 512–524.PubMedCrossrefGoogle Scholar

  • Baker, M. (2010). Making membrane proteins for structures: a trillion tiny tweaks. Nat. Methods 7, 429–434.Google Scholar

  • Ballal, A., Basu, B., and Apte, S.K. (2007). The Kdp-ATPase system and its regulation. J. Biosci. 32, 559–568.Google Scholar

  • Bernsel, A., Viklund, H., Falk, J., Lindahl, E., von Heijne, G., and Elofsson, A. (2008). Prediction of membrane-protein topology from first principles. Proc. Natl. Acad. Sci. USA 105, 7177–7181.Google Scholar

  • Bidwell, P., Blackwell, D.J., Hou, Z., Zima, A.V., and Robia, S.L. (2011). Phospholamban binds with differential affinity to calcium pump conformers. J. Biol. Chem. 286, 35044–35050.Google Scholar

  • Bordag, N. and Keller, S. (2010). Alpha-helical transmembrane peptides: a “divide and conquer” approach to membrane proteins. Chem. Phys. Lipids. 163, 1–26.Google Scholar

  • Brodsky, J.L. (2012). Cleaning up: ER-associated degradation to the rescue. Cell 151, 1163–1167.Google Scholar

  • Brylinski, M. (2013). Exploring the “dark matter” of a mammalian proteome by protein structure and function modeling. Proteome Sci. 11, 47.Google Scholar

  • Chen, Z., Akin, B.L., and Jones, L.R. (2010). Ca2+ binding to site I of the cardiac Ca2+ pump is sufficient to dissociate phospholamban. J. Biol. Chem. 285, 3253–3260.Google Scholar

  • Cheng, Y. and Nash, H.A. (2007). Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc. Natl. Acad. Sci. USA 104, 17730–17734.Google Scholar

  • Collins, J.H. and Leszyk, J. (1987). The “gamma subunit” of Na,K-ATPase: a small, amphiphilic protein with a unique amino acid sequence. Biochemistry 26, 8665–8668.Google Scholar

  • Condron, M.M., Monien, B.H., and Bitan, G. (2008). Synthesis and purification of highly hydrophobic peptides derived from the C-Terminus of amyloid β-protein. Open Biotechnol. J 2, 87–93.Google Scholar

  • Cymer, F. and Schneider, D. (2008). Lessons from viruses: controlling the function of transmembrane proteins by interfering transmembrane helices. Curr. Med. Chem. 15, 779–785.Google Scholar

  • Daley, D.O., Rapp, M., Granseth, E., Melen, K., Drew, D., and von Heijne, G. (2005). Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323.Google Scholar

  • Douglas, J.L., Trieber, C.A., Afara, M., and Young, H.S. (2005). Rapid, high-yield expression and purification of Ca2+-ATPase regulatory proteins for high-resolution structural studies. Protein Expr. Purif. 40, 118–125.Google Scholar

  • Du, D., Wang, Z., James, N.R., Voss, J.E., Klimont, E., Ohene-Agyei, T., Venter, H., Chiu, W., and Luisi, B.F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature 509, 512–515.Google Scholar

  • Elofsson, A. and von Heijne, G. (2007). Membrane protein structure: prediction versus reality. Annu. Rev. Biochem. 76, 125–140.Google Scholar

  • Fajardo, V.A., Bombardier, E., Vigna, C., Devji, T., Bloemberg, D., Gamu, D., Gramolini, A.O., Quadrilatero, J., and Tupling, A.R. (2013). Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS One 8, e84304.Google Scholar

  • Fontaine, F., Fuchs, R.T., and Storz, G. (2011). Membrane localization of small proteins in Escherichia coli. J. Biol. Chem. 286, 32464–32474.Google Scholar

  • Forbush, B., 3rd, Kaplan, J.H., and Hoffman, J.F. (1978). Characterization of a new photoaffinity derivative of ouabain: labeling of the large polypeptide and of a proteolipid component of the Na, K-ATPase. Biochemistry 17, 3667–3676.Google Scholar

  • Frith, M.C., Bailey, T.L., Kasukawa, T., Mignone, F., Kummerfeld, S.K., Madera, M., Sunkara, S., Furuno, M., Bult, C.J., Quackenbush, J., et al. (2006a). Discrimination of non-protein-coding transcripts from protein-coding mRNA. RNA Biol. 3, 40–48.Google Scholar

  • Frith, M.C., Forrest, A.R., Nourbakhsh, E., Pang, K.C., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., Bailey, T.L., and Grimmond, S.M. (2006b). The abundance of short proteins in the mammalian proteome. PLoS Genet. 2, e52.CrossrefGoogle Scholar

  • Fujii, J., Ueno, A., Kitano, K., Tanaka, S., Kadoma, M., and Tada, M. (1987). Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. J. Clin. Invest. 79, 301–304.Google Scholar

  • Gannoun-Zaki, L., Alibaud, L., Carrere-Kremer, S., Kremer, L., and Blanc-Potard, A.B. (2013). Overexpression of the KdpF membrane peptide in Mycobacterium bovis BCG results in reduced intramacrophage growth and altered cording morphology. PLoS One 8, e60379.Google Scholar

  • Garbis, S., Lubec, G., and Fountoulakis, M. (2005). Limitations of current proteomics technologies. J. Chromatogr. A 1077, 1–18.Google Scholar

  • Gassel, M., Mollenkamp, T., Puppe, W., and Altendorf, K. (1999). The KdpF subunit is part of the K+-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. J. Biol. Chem. 274, 37901–37907.Google Scholar

  • Geering, K. (2006). FXYD proteins: new regulators of Na-K-ATPase. Am. J. Physiol. Renal Physiol. 290, F241–250.Google Scholar

  • Ghimire, H., Abu-Baker, S., Sahu, I.D., Zhou, A., Mayo, D.J., Lee, R.T., and Lorigan, G.A. (2012). Probing the helical tilt and dynamic properties of membrane-bound phospholamban in magnetically aligned bicelles using electron paramagnetic resonance spectroscopy. Biochim. Biophys. Acta 1818, 645–650.Google Scholar

  • Glaves, J.P., Trieber, C.A., Ceholski, D.K., Stokes, D.L., and Young, H.S. (2011). Phosphorylation and mutation of phospholamban alter physical interactions with the sarcoplasmic reticulum calcium pump. J. Mol. Biol. 405, 707–723.Google Scholar

  • Glaves, J.P., Gorski, P.A., Alier, K., Ma, L., Renault, L., Primeau, J.O., Jhamandas, J.H., and Young, H.S. (2013). Distinct morphological and electrophysiological properties of an elk prion peptide. Peptides 40, 49–56.Google Scholar

  • Gorski, P.A., Trieber, C.A., Lariviere, E., Schuermans, M., Wuytack, F., Young, H.S., and Vangheluwe, P. (2012). Transmembrane helix 11 is a genuine regulator of the endoplasmic reticulum Ca2+ pump and acts as a functional parallel of beta-subunit on α-Na+,K+-ATPase. J. Biol. Chem. 287, 19876–19885.Google Scholar

  • Gorski, P.A., Glaves, J.P., Vangheluwe, P., and Young, H.S. (2013). Sarco(endo)plasmic reticulum calcium ATPase (SERCA) inhibition by sarcolipin is encoded in its luminal tail. J. Biol. Chem. 288, 8456–8467.Google Scholar

  • Hede, K. (2014). Antibiotic resistance: An infectious arms race. Nature 509, S2–3.Google Scholar

  • Heijne, G. (1986). The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5, 3021–3027.Google Scholar

  • Hemm, M.R., Paul, B.J., Schneider, T.D., Storz, G., and Rudd, K.E. (2008). Small membrane proteins found by comparative genomics and ribosome binding site models. Mol. Microbiol. 70, 1487–1501.Google Scholar

  • Hessa, T., Kim, H., Bihlmaier, K., Lundin, C., Boekel, J., Andersson, H., Nilsson, I., White, S.H., and von Heijne, G. (2005). Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381.Google Scholar

  • Hessa, T., Meindl-Beinker, N.M., Bernsel, A., Kim, H., Sato, Y., Lerch-Bader, M., Nilsson, I., White, S.H., and von Heijne, G. (2007). Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030.Google Scholar

  • Hobbs, E.C., Fontaine, F., Yin, X., and Storz, G. (2011). An expanding universe of small proteins. Curr. Opin. Microbiol. 14, 167–173.Google Scholar

  • Hobbs, E.C., Yin, X., Paul, B.J., Astarita, J.L., and Storz, G. (2012). Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc. Natl. Acad. Sci. USA 109, 16696–16701.Google Scholar

  • Hong, M. (2006). Oligomeric structure, dynamics, and orientation of membrane proteins from solid-state NMR. Structure 14, 1731–1740.Google Scholar

  • Hopf, T.A., Colwell, L.J., Sheridan, R., Rost, B., Sander, C., and Marks, D.S. (2012). Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621.Google Scholar

  • Hopkins, A.L. and Groom, C.R. (2002). The druggable genome. Nat. Rev. Drug Discov. 1, 727–730.Google Scholar

  • Hu, J., Qin, H., Li, C., Sharma, M., Cross, T.A., and Gao, F.P. (2007). Structural biology of transmembrane domains: efficient production and characterization of transmembrane peptides by NMR. Protein Sci. 16, 2153–2165.PubMedCrossrefGoogle Scholar

  • Imagawa, T., Watanabe, T., and Nakamura, T. (1986). Subunit structure and multiple phosphorylation sites of phospholamban. J. Biochem. 99, 41–53.Google Scholar

  • Jefferson, R.E., Blois, T.M., and Bowie, J.U. (2013). Membrane proteins can have high kinetic stability. J. Am. Chem. Soc. 135, 15183–15190.Google Scholar

  • Jorgensen, A.O. and Jones, L.R. (1986). Localization of phospholamban in slow but not fast canine skeletal muscle fibers. An immunocytochemical and biochemical study. J. Biol. Chem. 261, 3775–3781.Google Scholar

  • Katragadda, M., Alderfer, J.L., and Yeagle, P.L. (2001). Assembly of a polytopic membrane protein structure from the solution structures of overlapping peptide fragments of bacteriorhodopsin. Biophys. J. 81, 1029–1036.Google Scholar

  • Kemp, G., Fliegel, L., and Young, H.S. (2014). Membrane transport piece by piece: production of transmembrane peptides for structural and functional studies. Curr. Protoc. Protein Sci. 75, Unit 29 28.Google Scholar

  • Killian, J.A. (2003). Synthetic peptides as models for intrinsic membrane proteins. FEBS Lett. 555, 134–138.Google Scholar

  • Killian, J.A. and Nyholm, T.K. (2006). Peptides in lipid bilayers: the power of simple models. Curr. Opin. Struct. Biol. 16, 473–479.CrossrefPubMedGoogle Scholar

  • Kim, M.S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, S.S., Chaerkady, R., Madugundu, A.K., Kelkar, D.S., Isserlin, R., Jain, S., et al. (2014). A draft map of the human proteome. Nature 509, 575–581.Google Scholar

  • Kimura, Y., Kurzydlowski, K., Tada, M., and MacLennan, D.H. (1997). Phospholamban inhibitory function is activated by depolymerization. J. Biol. Chem. 272, 15061–15064.Google Scholar

  • Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580.Google Scholar

  • Ladoukakis, E., Pereira, V., Magny, E.G., Eyre-Walker, A., and Couso, J.P. (2011). Hundreds of putatively functional small open reading frames in Drosophila. Genome Biol. 12, R118.CrossrefGoogle Scholar

  • Lee, H. and Kim, H. (2014). Membrane topology of transmembrane proteins: determinants and experimental tools. Biochem. Biophys. Res. Commun. Epub ahead of print.Google Scholar

  • Lee, B.L., Sykes, B.D., and Fliegel, L. (2011). Structural analysis of the Na+/H+ exchanger isoform 1 (NHE1) using the divide and conquer approach. Biochem. Cell Biol. 89, 189–199.Google Scholar

  • MacKenzie, K.R., Prestegard, J.H., and Engelman, D.M. (1997). A transmembrane helix dimer: structure and implications. Science 276, 131–133.Google Scholar

  • MacLennan, D.H. and Kranias, E.G. (2003). Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4, 566–577.CrossrefPubMedGoogle Scholar

  • Maslennikov, I. and Choe, S. (2013). Advances in NMR structures of integral membrane proteins. Curr. Opin. Struct. Biol. 23, 555–562.Google Scholar

  • Mittendorf, K.F., Deatherage, C.L., Ohi, M.D., and Sanders, C.R. (2012). Tailoring of membrane proteins by alternative splicing of pre-mRNA. Biochemistry 51, 5541–5556.Google Scholar

  • Mueller, B., Karim, C.B., Negrashov, I.V., Kutchai, H., and Thomas, D.D. (2004). Direct detection of phospholamban and sarcoplasmic reticulum Ca-ATPase interaction in membranes using fluorescence resonance energy transfer. Biochemistry 43, 8754–8765.Google Scholar

  • Obara, K., Miyashita, N., Xu, C., Toyoshima, I., Sugita, Y., Inesi, G., and Toyoshima, C. (2005). Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc. Natl. Acad. Sci. USA 102, 14489–14496.Google Scholar

  • Odermatt, A., Taschner, P.E., Scherer, S.W., Beatty, B., Khanna, V.K., Cornblath, D.R., Chaudhry, V., Yee, W.C., Schrank, B., Karpati, G., et al. (1997). Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. Genomics 45, 541–553.Google Scholar

  • Odermatt, A., Becker, S., Khanna, V.K., Kurzydlowski, K., Leisner, E., Pette, D., and MacLennan, D.H. (1998). Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 273, 12360–12369.Google Scholar

  • Oxenoid, K. and Chou, J.J. (2005). The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc. Natl. Acad. Sci. USA 102, 10870–10875.Google Scholar

  • Popot, J.L. (2014). Folding membrane proteins in vitro: a table and some comments. Arch. Biochem. Biophys. 2014 Jul 2. pii: S0003-9861(14)00238-0. doi: 10.1016/j.abb.2014.06.029. [Epub ahead of print].CrossrefGoogle Scholar

  • Raschle, T., Hiller, S., Etzkorn, M., and Wagner, G. (2010). Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr. Opin. Struct. Biol. 20, 471–479.PubMedCrossrefGoogle Scholar

  • Rath, A., Glibowicka, M., Nadeau, V.G., Chen, G., and Deber, C.M. (2009). Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc. Natl. Acad. Sci. USA 106, 1760–1765.Google Scholar

  • Rath, A., Cunningham, F., and Deber, C.M. (2013). Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts. Proc. Natl. Acad. Sci. USA 110, 15668–15673.Google Scholar

  • Rice, P., Longden, I., and Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277.CrossrefPubMedGoogle Scholar

  • Schneider, D., Volkmer, T., and Rogner, M. (2007). PetG and PetN, but not PetL, are essential subunits of the cytochrome b6f complex from Synechocystis PCC 6803. Res. Microbiol. 158, 45–50.Google Scholar

  • Schrank, E., Wagner, G.E., and Zangger, K. (2013). Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Molecules 18, 7407–7435.Google Scholar

  • Seidel, K., Andronesi, O.C., Krebs, J., Griesinger, C., Young, H.S., Becker, S., and Baldus, M. (2008). Structural characterization of Ca2+-ATPase-bound phospholamban in lipid bilayers by solid-state nuclear magnetic resonance (NMR) spectroscopy. Biochemistry 47, 4369–4376.Google Scholar

  • Shai, Y., Makovitzky, A., and Avrahami, D. (2006). Host defense peptides and lipopeptides: modes of action and potential candidates for the treatment of bacterial and fungal infections. Curr. Protein Pept. Sci. 7, 479–486.Google Scholar

  • Slavoff, S.A., Mitchell, A.J., Schwaid, A.G., Cabili, M.N., Ma, J., Levin, J.Z., Karger, A.D., Budnik, B.A., Rinn, J.L., and Saghatelian, A. (2013). Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat. Chem. Biol. 9, 59–64.Google Scholar

  • Slepkov, E.R., Rainey, J.K., Li, X., Liu, Y., Cheng, F.J., Lindhout, D.A., Sykes, B.D., and Fliegel, L. (2005). Structural and functional characterization of transmembrane segment IV of the NHE1 isoform of the Na+/H+ exchanger. J. Biol. Chem. 280, 17863–17872.Google Scholar

  • Storz, G., Wolf, Y.I., and Ramamurthi, K.S. (2014). Small proteins can no longer be ignored. Annu. Rev. Biochem. 83, 753–777.Google Scholar

  • Szule, J.A. and Rand, R.P. (2003). The effects of gramicidin on the structure of phospholipid assemblies. Biophys. J. 85, 1702–1712.Google Scholar

  • Tada, M., Kirchberger, M.A., Repke, D.I., and Katz, A.M. (1974). The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 249, 6174–6180.Google Scholar

  • Tada, M., Kirchberger, M.A., and Katz, A.M. (1975). Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 250, 2640–2647.Google Scholar

  • Thogersen, L. and Nissen, P. (2012). Flexible P-type ATPases interacting with the membrane. Curr. Opin. Struct. Biol. 22, 491–499.Google Scholar

  • Traaseth, N.J., Buffy, J.J., Zamoon, J., and Veglia, G. (2006). Structural dynamics and topology of phospholamban in oriented lipid bilayers using multidimensional solid-state NMR. Biochemistry 45, 13827–13834.Google Scholar

  • Ullah, A., Kemp, G., Lee, B., Alves, C., Young, H., Sykes, B.D., and Fliegel, L. (2013). Structural and functional analysis of transmembrane segment IV of the salt tolerance protein Sod2. J. Biol. Chem. 288, 24609–24624.Google Scholar

  • Vandecaetsbeek, I., Trekels, M., De Maeyer, M., Ceulemans, H., Lescrinier, E., Raeymaekers, L., Wuytack, F., and Vangheluwe, P. (2009). Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proc. Natl. Acad. Sci. USA 106, 18533–18538.Google Scholar

  • Verboomen, H., Wuytack, F., Van den Bosch, L., Mertens, L., and Casteels, R. (1994). The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2+-transport ATPase (SERCA2a/b). Biochem. J. 303, 979–984.Google Scholar

  • Volkmer, T., Schneider, D., Bernat, G., Kirchhoff, H., Wenk, S.O., and Rogner, M. (2007). Ssr2998 of Synechocystis sp. PCC 6803 is involved in regulation of cyanobacterial electron transport and associated with the cytochrome b6f complex. J. Biol. Chem. 282, 3730–3737.Google Scholar

  • von Heijne, G. (1992). Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487–494.Google Scholar

  • Walkenhorst, W.F., Merzlyakov, M., Hristova, K., and Wimley, W.C. (2009). Polar residues in transmembrane helices can decrease electrophoretic mobility in polyacrylamide gels without causing helix dimerization. Biochim. Biophys. Acta 1788, 1321–1331.Google Scholar

  • Wallin, E. and von Heijne, G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038.Google Scholar

  • White, S.H. and Wimley, W.C. (1998). Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta 1376, 339–352.Google Scholar

  • Wilhelm, M., Schlegl, J., Hahne, H., Moghaddas Gholami, A., Lieberenz, M., Savitski, M.M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., et al. (2014). Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587.Google Scholar

  • Wimley, W.C. and White, S.H. (1996). Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848.Google Scholar

  • Yang, X., Tschaplinski, T.J., Hurst, G.B., Jawdy, S., Abraham, P.E., Lankford, P.K., Adams, R.M., Shah, M.B., Hettich, R.L., Lindquist, E., et al. (2011). Discovery and annotation of small proteins using genomics, proteomics, and computational approaches. Genome Res. 21, 634–641.Google Scholar

  • Zheng, J.S., Yu, M., Qi, Y.K., Tang, S., Shen, F., Wang, Z.P., Xiao, L., Zhang, L., Tian, C.L., and Liu, L. (2014). Expedient total synthesis of small to medium-sized membrane proteins via Fmoc chemistry. J. Am. Chem. Soc. 136, 3695–3704.Google Scholar

About the article

Grant Kemp

Grant Kemp studied Biochemistry at the University of Alberta in Edmonton, Canada, going on to complete a PhD under the supervision of Drs. Howard Young and Larry Fliegel. His thesis focused on understanding the structure and function of eukaryotic sodium proton exchangers with a focus on protein expression and reconstitution techniques. After successfully defending his PhD in the fall of 2013, he joined the laboratory of Prof. Gunnar von Heijne to study the co-translational folding of membrane proteins.

Florian Cymer

Florian Cymer studied biology at the University of Frankfurt and Ulm. He then joined the group of Prof. Dr. Dirk Schneider as a PhD student, and investigated the in vitro and in vivo oligomerization of membrane proteins. He received his PhD in 2010 from the University of Freiburg and joined the group of Prof. Dr. Gunnar von Heijne at the University of Stockholm as a Postdoc. He currently focuses on the membrane insertion and folding of bacterial and mammalian polytopic membrane proteins.


Corresponding author: Florian Cymer, Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden, e-mail:


Received: 2014-06-16

Accepted: 2014-08-06

Published Online: 2014-08-12

Published in Print: 2014-12-01


Citation Information: Biological Chemistry, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0213.

Export Citation

©2014 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sarah M. Hücker, Zachary Ardern, Tatyana Goldberg, Andrea Schafferhans, Michael Bernhofer, Gisle Vestergaard, Chase W. Nelson, Michael Schloter, Burkhard Rost, Siegfried Scherer, Klaus Neuhaus, and Christos A. Ouzounis
PLOS ONE, 2017, Volume 12, Number 9, Page e0184119
[2]
Susanna Seppälä, Kevin V. Solomon, Sean P. Gilmore, John K. Henske, and Michelle A. O’Malley
Microbial Cell Factories, 2016, Volume 15, Number 1
[3]
Ji-Shen Zheng, Yao He, Chao Zuo, Xiao-Ying Cai, Shan Tang, Zhipeng A. Wang, Long-Hua Zhang, Chang-Lin Tian, and Lei Liu
Journal of the American Chemical Society, 2016, Volume 138, Number 10, Page 3553
[4]
Klaus Neuhaus, Richard Landstorfer, Lea Fellner, Svenja Simon, Andrea Schafferhans, Tatyana Goldberg, Harald Marx, Olga N. Ozoline, Burkhard Rost, Bernhard Kuster, Daniel A. Keim, and Siegfried Scherer
BMC Genomics, 2016, Volume 17, Number 1
[5]
Jun Liu and Sharon Rozovsky
Antioxidants & Redox Signaling, 2015, Volume 23, Number 10, Page 795
[6]
Michael Stangl and Dirk Schneider
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2015, Volume 1848, Number 9, Page 1886

Comments (0)

Please log in or register to comment.
Log in