Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 395, Issue 12

Issues

Structural characterization of a C-terminally truncated E5 oncoprotein from papillomavirus in lipid bilayers

Dirk Windisch
  • Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Colin Ziegler / Jochen Bürck
  • Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anne S. Ulrich
  • Corresponding author
  • Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
  • KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-31 | DOI: https://doi.org/10.1515/hsz-2014-0222

Abstract

E5 is the major transforming oncoprotein of bovine papillomavirus, which activates the platelet-derived growth factor receptor β in a highly specific manner. The short transmembrane protein E5 with only 44 residues interacts directly with the transmembrane segments of the receptor, but structural details are not available. Biophysical investigations are challenging, because the hydrophobic E5 protein tends to aggregate and get cross-linked non-specifically via two Cys residues near its C-terminus. Here, we demonstrate that a truncation by 10 amino acids creates a more manageable protein that can be conveniently used for structure analysis. Synchrotron radiation circular dichroism and solid-state 15N- and 31P-nuclear magnetic resonance spectroscopy show that this E5 variant serves as a representative model for the wild-type protein. The helical conformation of the transmembrane segment, its orientation in the lipid bilayer, and the ability to form homodimers in the membrane are not affected by the C-terminal truncation.

Keywords: E5; oriented circular dichroism; solid-state nuclear magnetic resonance; synchrotron radiation circular dichroism; ToxR assay; transmembrane domains

References

  • Aberle, D., Muhle-Goll, C., Bürck, J., Wolf, M., Reißer, S., Luy, B., Wenzel, W., Ulrich, A.S., and Meyers, G. (2014). Structure of the membrane anchor of pestivirus glycoprotein E(rns), a long tilted amphipathic helix. PLoS Pathog. 10, e1003973.CrossrefGoogle Scholar

  • Brosig, B. and Langosch, D. (1998). The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues. Protein Sci. 7, 1052–1056.PubMedGoogle Scholar

  • Bürck, J., Roth, S., Wadhwani, P., Afonin, S., Kanithasen, N., Strandberg, E., and Ulrich, A.S. (2008). Conformation and membrane orientation of amphiphilic helical peptides by oriented circular dichroism. Biophys. J. 95, 3872–3881.PubMedCrossrefGoogle Scholar

  • Burkhardt, A., DiMaio, D., and Schlegel, R. (1987). Genetic and biochemical definition of the bovine papillomavirus E5 transforming protein. EMBO J. 6, 2381–2385.Google Scholar

  • Burkhardt, A., Willingham, M., Gay, C., Jeang, K.T., and Schlegel, R. (1989). The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. Virology 170, 334–339.Google Scholar

  • Clarke, D.T. and Jones, G. (2004). CD12: a new high-flux beamline for ultraviolet and vacuum-ultraviolet circular dichroism on the SRS, Daresbury. J. Synchrotron. Radiat. 11, 142–149.CrossrefGoogle Scholar

  • Fanghänel, S., Wadhwani, P., Strandberg, E., Verdurmen, W.P.R., Bürck, J., Ehni, S., Mykhailiuk, P., Afonin, S., Gerthsen, D., Komarov, I.V., et al. (2014). Structure analysis and conformational transitions of the cell penetrating Peptide transportan 10 in the membrane-bound state. PLoS One 9, e99653.Google Scholar

  • Freeman-Cook, L.L., Dixon, A.M., Frank, J.B., Xia, Y., Ely, L., Gerstein, M., Engelman, D.M., and DiMaio, D. (2004). Selection and characterization of small random transmembrane proteins that bind and activate the platelet-derived growth factor beta receptor. J. Mol. Biol. 338, 907–920.Google Scholar

  • Goldstein, D.J. and Schlegel, R. (1990). The E5 oncoprotein of bovine papillomavirus binds to a 16 kd cellular protein. EMBO J. 9, 137–145.Google Scholar

  • Goldstein, D.J., Andresson, T., Sparkowski, J.J., and Schlegel, R. (1992). The BPV-1 E5 protein, the 16 kDa membrane pore-forming protein and the PDGF receptor exist in a complex that is dependent on hydrophobic transmembrane interactions. EMBO J. 11, 4851–4859.Google Scholar

  • Goldstein, D.J., Li, W., Wang, L.M., Heidaran, M.A., Aaronson, S., Shinn, R., Schlegel, R., and Pierce, J.H. (1994). The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for the platelet-derived growth factor but not other related tyrosine kinase-containing receptors to induce cellular transformation. J. Virol. 68, 4432–4441.Google Scholar

  • Heinzmann, R., Grage, S.L., Schalck, C., Bürck, J., Bánóczi, Z., Toke, O., and Ulrich, A.S. (2011). A kinked antimicrobial peptide from Bombina maxima. II. Behavior in phospholipid bilayers. Eur. Biophys. J. 40, 463–470.CrossrefGoogle Scholar

  • Horwitz, B.H., Burkhardt, A.L., Schlegel, R., and DiMaio, D. (1988). 44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids. Mol. Cell. Biol. 8, 4071–4078.Google Scholar

  • King, G., Oates, J., Patel, D., van den Berg, H.A., and Dixon, A.M. (2011). Towards a structural understanding of the smallest known oncoprotein: investigation of the bovine papillomavirus E5 protein using solution-state NMR. Biochim. Biophys. Acta 1808, 1493–1501.Google Scholar

  • Klein, O., Polack, G.W., Surti, T., Kegler-Ebo, D., Smith, S.O., and DiMaio, D. (1998). Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation. J. Virol. 72, 8921–8932.Google Scholar

  • Klein, O., Kegler-Ebo, D., Su, J., Smith, S., and DiMaio, D. (1999). The bovine papillomavirus E5 protein requires a juxtamembrane negative charge for activation of the platelet-derived growth factor beta receptor and transformation of C127 cells. J. Virol. 73, 3264–3272.Google Scholar

  • Klein, M.J., Grage, S.L., Muhle-Goll, C., Bürck, J., Afonin, S., and Ulrich, A.S. (2012). Structure analysis of the membrane-bound PhoD signal peptide of the Tat translocase shows an N-terminal amphiphilic helix. Biochim. Biophys. Acta 1818, 3025–3031.Google Scholar

  • Kulke, R., Horwitz, B.H., Zibello, T., and DiMaio, D. (1992). The central hydrophobic domain of the bovine papillomavirus E5 transforming protein can be functionally replaced by many hydrophobic amino acid sequences containing a glutamine. J. Virol. 66, 505–511.Google Scholar

  • Lange, C., Müller, S.D., Walther, T.H., Bürck, J., and Ulrich, A.S. (2007). Structure analysis of the protein translocating channel TatA in membranes using a multi-construct approach. Biochim. Biophys. Acta 1768, 2627–2634.Google Scholar

  • Langosch, D., Brosig, B., Kolmar, H., and Fritz, H.J. (1996). Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J. Mol. Biol. 263, 525–530.Google Scholar

  • Levitt, M.H., Suter, D., and Ernst, R.R. (1986). Spin dynamics and thermodynamics in solid-state NMR cross polarization. J. Chem. Phys. 84, 4243–4255.Google Scholar

  • Mattoon, D., Gupta, K., Doyon, J., Loll, P.J., and DiMaio, D. (2001). Identification of the transmembrane dimer interface of the bovine papillomavirus E5 protein. Oncogene 20, 3824–3834.Google Scholar

  • Meyer, A.N., Xu, Y.F., Webster, M.K., Smith, A.E., and Donoghue, D.J. (1994). Cellular transformation by a transmembrane peptide: structural requirements for the bovine papillomavirus E5 oncoprotein. Proc. Natl. Acad. Sci. USA 91, 4634–4638.Google Scholar

  • Muhle-Goll, C., Hoffmann, S., Afonin, S., Grage, S.L., Polyansky, A.A., Windisch, D., Zeitler, M., Bürck, J., and Ulrich, A.S. (2012). Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) β transmembrane segment. J. Biol. Chem. 287, 26178–26186.Google Scholar

  • Nilson, L.A. and DiMaio, D. (1993). Platelet-derived growth factor receptor can mediate tumorigenic transformation by the bovine papillomavirus E5 protein. Mol. Cell. Biol. 13, 4137–4145.Google Scholar

  • Nolandt, O.V., Walther, T.H., Roth, S., Bürck, J., and Ulrich, A.S. (2009). Structure analysis of the membrane protein TatC(d) from the Tat system of B. subtilis by circular dichroism. Biochim. Biophys. Acta 1788, 2238–2244.Google Scholar

  • Oates, J., Hicks, M., Dafforn, T.R., DiMaio, D., and Dixon, A.M. (2008). In vitro dimerization of the bovine papillomavirus E5 protein transmembrane domain. Biochemistry 47, 8985–8992.Google Scholar

  • Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423.PubMedCrossrefGoogle Scholar

  • Petti, L. and DiMaio, D. (1992). Stable association between the bovine papillomavirus E5 transforming protein and activated platelet-derived growth factor receptor in transformed mouse cells. Proc. Natl. Acad. Sci. USA 89, 6736–6740.Google Scholar

  • Petti, L., Nilson, L.A., and DiMaio, D. (1991). Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 10, 845–855.Google Scholar

  • Petti, L.M., Reddy, V., Smith, S.O., and DiMaio, D. (1997). Identification of amino acids in the transmembrane and juxtamembrane domains of the platelet-derived growth factor receptor required for productive interaction with the bovine papillomavirus E5 protein. J. Virol. 71, 7318–7327.Google Scholar

  • Russ, W.P. and Engelman, D.M. (1999). TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc. Natl. Acad. Sci. USA 96, 863–868.Google Scholar

  • Schlegel, R., Wade-Glass, M., Rabson, M.S., and Yang, Y.C. (1986). The E5 transforming gene of bovine papillomavirus encodes a small, hydrophobic polypeptide. Science 233, 464–467.Google Scholar

  • Settleman, J., Fazeli, A., Malicki, J., Horwitz, B.H., and DiMaio, D. (1989). Genetic evidence that acute morphologic transformation, induction of cellular DNA synthesis, and focus formation are mediated by a single activity of the bovine papillomavirus E5 protein. Mol. Cell. Biol. 9, 5563–5572.Google Scholar

  • Sparkowski, J., Unders, J., and Schlegel, R. (1995). E5 oncoprotein retained in the endoplasmic reticulum/cis Golgi still induces PDGF receptor autophosphorylation but does not transform cells. EMBO J. 14, 3055–3063.Google Scholar

  • Sreerama, N., Venyaminov, S.Y., and Woody, R.W. (1999). Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci. 8, 370–380.PubMedGoogle Scholar

  • Staebler, A., Pierce, J.H., Brazinski, S., Heidaran, M.A., Li, W., Schlegel, R., and Goldstein, D.J. (1995). Mutational analysis of the beta-type platelet-derived growth factor receptor defines the site of interaction with the bovine papillomavirus type 1 E5 transforming protein. J. Virol. 69, 6507–6517.Google Scholar

  • Steinbrecher, T., Prock, S., Reichert, J., Wadhwani, P., Zimpfer, B., Bürck, J., Berditsch, M., Elstner, M., and Ulrich, A.S. (2012). Peptide-lipid interactions of the stress-response peptide TisB that induces bacterial persistence. Biophys. J. 103, 1460–1469.Google Scholar

  • Strandberg, E., Kanithasen, N., Tiltak, D., Bürck, J., Wadhwani, P., Zwernemann, O., and Ulrich, A.S. (2008). Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers. Biochemistry 47, 2601–2616.Google Scholar

  • Surti, T., Klein, O., Aschheim, K., DiMaio, D., and Smith, S.O. (1998). Structural models of the bovine papillomavirus E5 protein. Proteins 33, 601–612.Google Scholar

  • Talbert-Slagle, K., Marlatt, S., Barrera, F.N., Khurana, E., Oates, J., Gerstein, M., Engelman, D.M., Dixon, A.M., and DiMaio, D. (2009). Artificial transmembrane oncoproteins smaller than the bovine papillomavirus E5 protein redefine sequence requirements for activation of the platelet-derived growth factor beta receptor. J. Virol. 83, 9773–9785.Google Scholar

  • van Stokkum, I.H., Spoelder, H.J., Bloemendal, M., van Grondelle, R., and Groen, F.C. (1990). Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal. Biochem. 191, 110–118.Google Scholar

  • Wadhwani, P., Bürck, J., Strandberg, E., Mink, C., Afonin, S., and Ulrich, A.S. (2008). Using a sterically restrictive amino acid as a 19F NMR label to monitor and to control peptide aggregation in membranes. J. Am. Chem. Soc. 130, 16515–16517.Google Scholar

  • Wadhwani, P., Strandberg, E., Heidenreich, N., Bürck, J., Fanghänel, S., and Ulrich, A.S. (2012). Self-assembly of flexible β-strands into immobile amyloid-like β-sheets in membranes as revealed by solid-state 19F NMR. J. Am. Chem. Soc. 134, 6512–6515.Google Scholar

  • Wadhwani, P., Strandberg, E., van den Berg, J., Mink, C., Bürck, J., Ciriello, R.A., and Ulrich, A.S. (2014). Dynamical structure of the short multifunctional peptide BP100 in membranes. Biochim. Biophys. Acta 1838, 940–949.Google Scholar

  • Wallace, B.A. and Janes, R.W. (2009). Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (Amsterdam, NL: IOS Press).Google Scholar

  • Wallace, B.A. and Mao, D. (1984). Circular dichroism analyses of membrane proteins: an examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets. Anal. Biochem. 142, 317–328.Google Scholar

  • Wallace, B.A. and Teeters, C.L. (1987). Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. Biochemistry 26, 65–70.Google Scholar

  • Walther, T.H. and Ulrich, A.S. (2014). Transmembrane helix assembly and the role of salt bridges. Curr. Opin. Struct. Biol. 27, 63–68.PubMedCrossrefGoogle Scholar

  • Wei, P., Liu, X., Hu, M.-H., Zuo, L.-M., Kai, M., Wang, R., and Luo, S.-Z. (2011). The dimerization interface of the glycoprotein Ibβ transmembrane domain corresponds to polar residues within a leucine zipper motif. Protein Sci. 20, 1814–1823.PubMedCrossrefGoogle Scholar

  • Whitmore, L. and Wallace, B.A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668-73.CrossrefGoogle Scholar

  • Whitmore, L., Woollett, B., Miles, A.J., Klose, D.P., Janes, R.W., and Wallace, B.A. (2011). PCDDB: the Protein Circular Dichroism Data Bank, a repository for circular dichroism spectral and metadata. Nucleic Acids Res. 39, D480-6.Google Scholar

  • Windisch, D., Hoffmann, S., Afonin, S., Vollmer, S., Benamira, S., Langer, B., Bürck, J., Muhle-Goll, C., and Ulrich, A.S. (2010). Structural role of the conserved cysteines in the dimerization of the viral transmembrane oncoprotein E5. Biophys. J. 99, 1764–1772.Google Scholar

  • Wu, Y., Huang, H.W., and Olah, G.A. (1990). Method of oriented circular dichroism. Biophys. J. 57, 797–806.Google Scholar

About the article

Corresponding author: Anne S. Ulrich, Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; and KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, e-mail:


Received: 2014-06-27

Accepted: 2014-10-10

Published Online: 2014-10-31

Published in Print: 2014-12-01


Citation Information: Biological Chemistry, Volume 395, Issue 12, Pages 1443–1452, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0222.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alexander G. Karabadzhak, Lisa M. Petti, Francisco N. Barrera, Anne P. B. Edwards, Andrés Moya-Rodríguez, Yury S. Polikanov, J. Alfredo Freites, Douglas J. Tobias, Donald M. Engelman, and Daniel DiMaio
Proceedings of the National Academy of Sciences, 2017, Volume 114, Number 35, Page E7262
[2]
Ariadna Grau-Campistany, Erik Strandberg, Parvesh Wadhwani, Francesc Rabanal, and Anne S. Ulrich
The Journal of Physical Chemistry Letters, 2016, Volume 7, Number 7, Page 1116
[3]
Jochen Bürck, Parvesh Wadhwani, Susanne Fanghänel, and Anne S. Ulrich
Accounts of Chemical Research, 2016, Volume 49, Number 2, Page 184
[4]
Dirk Windisch, Colin Ziegler, Stephan L. Grage, Jochen Bürck, Marcel Zeitler, Peter L. Gor’kov, and Anne S. Ulrich
Biophysical Journal, 2015, Volume 109, Number 4, Page 737

Comments (0)

Please log in or register to comment.
Log in