Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 395, Issue 2

Issues

Enrichment of target sequences for next-generation sequencing applications in research and diagnostics

Janine Altmüller
  • Corresponding author
  • Cologne Center for Genomics, University of Cologne, D-50931 Cologne, Germany
  • These authors contributed equally to this article.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Birgit S. Budde
  • Cologne Center for Genomics, University of Cologne, D-50931 Cologne, Germany
  • These authors contributed equally to this article.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Nürnberg
  • Cologne Center for Genomics, University of Cologne, D-50931 Cologne, Germany
  • Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, D-50674 Cologne, Germany
  • Center for Molecular Medicine Cologne, University of Cologne, D-50931 Cologne, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-05 | DOI: https://doi.org/10.1515/hsz-2013-0199

Abstract

Targeted re-sequencing such as gene panel sequencing (GPS) has become very popular in medical genetics, both for research projects and in diagnostic settings. The technical principles of the different enrichment methods have been reviewed several times before; however, new enrichment products are constantly entering the market, and researchers are often puzzled about the requirement to take decisions about long-term commitments, both for the enrichment product and the sequencing technology. This review summarizes important considerations for the experimental design and provides helpful recommendations in choosing the best sequencing strategy for various research projects and diagnostic applications.

Keywords: gene panel sequencing; target enrichment

References

  • Bakker, E. (2006). Is the DNA sequence the gold standard in genetic testing? Quality of molecular genetic tests assessed. Clin. Chem. 52, 557–558.PubMedCrossrefGoogle Scholar

  • Becker, K., Vollbrecht, C., Koitzsch, U., Koenig, K., Fassunke, J., Huss, S., Nuernberg, P., Heukamp, L.C., Buettner, R., Odenthal, M., et al. (2013). Deep ion sequencing of amplicon adapter ligated libraries: a novel tool in molecular diagnostics of formalin fixed and paraffin embedded tissues. J. Clin. Pathol. 66, 803–806.CrossrefWeb of ScienceGoogle Scholar

  • Charlesworth, G., Plagnol, V., Holmstrom, K.M., Bras, J., Sheerin, U.M., Preza, E., Rubio-Agusti, I., Ryten, M., Schneider, S.A., Stamelou, M., et al. (2012). Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am. J. Hum. Genet. 91, 1041–1050.Web of ScienceGoogle Scholar

  • Costa, J.L., Sousa, S., Justino, A., Kay, T., Fernandes, S., Cirnes, L., Schmitt, F., and Machado, J.C. (2013). Nonoptical massive parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic setting. Hum. Mutat. 34, 629–635.Web of ScienceGoogle Scholar

  • Dames, S., Chou, L.S., Xiao, Y., Wayman, T., Stocks, J., Singleton, M., Eilbeck, K., and Mao, R. (2013). The development of next-generation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mitochondrial disorders. J. Mol. Diagn. 15, 526–534.Google Scholar

  • Duncavage, E.J., Abel, H.J., Szankasi, P., Kelley, T.W., and Pfeifer, J.D. (2012). Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Modern Pathol. 25, 795–804.Web of ScienceCrossrefGoogle Scholar

  • Feng, B.J., Tavtigian, S.V., Southey, M.C., and Goldgar, D.E. (2011). Design considerations for massively parallel sequencing studies of complex human disease. PLoS One 6, e23221.Google Scholar

  • Forshew, T., Murtaza, M., Parkinson, C., Gale, D., Tsui, D.W., Kaper, F., Dawson, S.J., Piskorz, A.M., Jimenez-Linan, M., Bentley, D., et al. (2012). Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra68.Web of ScienceGoogle Scholar

  • Gargis, A.S., Kalman, L., Berry, M.W., Bick, D.P., Dimmock, D.P., Hambuch, T., Lu, F., Lyon, E., Voelkerding, K.V., Zehnbauer, B.A., et al. (2012). Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol. 30, 1033–1036.CrossrefGoogle Scholar

  • Hiatt, J.B., Pritchard, C.C., Salipante, S.J., O’Roak, B.J., and Shendure, J. (2013). Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 23, 843–854.Web of ScienceCrossrefGoogle Scholar

  • Hollants, S., Redeker, E.J., and Matthijs, G. (2012). Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin. Chem. 58, 717–724.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Hubers, A.J., Heideman, D.A., Yatabe, Y., Wood, M.D., Tull, J., Taron, M., Molina, M.A., Mayo, C., Bertran-Alamillo, J., Herder, G.J., et al. (2013). EGFR mutation analysis in sputum of lung cancer patients: a multitechnique study. Lung Cancer. DOI: 10.1016/j.lungcan.2013.07.011. [Epub ahead of print].CrossrefGoogle Scholar

  • Huebner, A.K., Gandia, M., Frommolt, P., Maak, A., Wicklein, E.M., Thiele, H., Altmuller, J., Wagner, F., Vinuela, A., Aguirre, L.A., et al. (2011). Nonsense mutations in SMPX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am. J. Hum. Genet. 88, 621–627.Web of ScienceCrossrefGoogle Scholar

  • Johansson, H., Isaksson, M., Sorqvist, E.F., Roos, F., Stenberg, J., Sjoblom, T., Botling, J., Micke, P., Edlund, K., Fredriksson, S., et al. (2011). Targeted resequencing of candidate genes using selector probes. Nucleic Acids Res. 39, e8.Web of ScienceCrossrefGoogle Scholar

  • Kalender, A.Z., De, K.K., Gianfelici, V., Geerdens, E., Vandepoel, R., Pauwels, D., Porcu, M., Lahortiga, I., Brys, V., Dirks, W.G., et al. (2012). High accuracy mutation detection in leukemia on a selected panel of cancer genes. PLoS One 7, e38463.Google Scholar

  • Katsanis, S.H. and Katsanis, N. (2013). Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 14, 415–426.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Kerick, M., Isau, M., Timmermann, B., Sultmann, H., Herwig, R., Krobitsch, S., Schaefer, G., Verdorfer, I., Bartsch, G., Klocker, H., et al. (2011). Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. Med. Genomics 4, 68.CrossrefWeb of ScienceGoogle Scholar

  • Ku, C.S., Cooper, D.N., Iacopetta, B., and Roukos, D.H. (2013). Integrating next-generation sequencing into the diagnostic testing of inherited cancer predisposition. Clin. Genet. 83, 2–6.PubMedGoogle Scholar

  • Lal, D., Becker, K., Motameny, S., Altmuller, J., Thiele, H., Nurnberg, P., Ahting, U., Rolinski, B., Neubauer, B.A., and Hahn, A. (2013). Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics 14, 85–87.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Lee, J.E., Choi, J.H., Lee, J.H., and Lee, M.G. (2005). Gene SNPs and mutations in clinical genetic testing: haplotype-based testing and analysis. Mutat. Res. 573, 195–204.PubMedGoogle Scholar

  • Lopes, L.R., Zekavati, A., Syrris, P., Hubank, M., Giambartolomei, C., Dalageorgou, C., Jenkins, S., McKenna, W., Plagnol, V., and Elliott, P.M. (2013). Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet. 50, 228–239.CrossrefGoogle Scholar

  • Mertes, F., Elsharawy, A., Sauer, S., van Helvoort, J.M., van der Zaag, P.J., Franke, A., Nilsson, M., Lehrach, H., and Brookes, A.J. (2011). Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief. Funct. Genomics 10, 374–386.CrossrefWeb of ScienceGoogle Scholar

  • Querings, S., Altmuller, J., Ansen, S., Zander, T., Seidel, D., Gabler, F., Peifer, M., Markert, E., Stemshorn, K., Timmermann, B., et al. (2011). Benchmarking of mutation diagnostics in clinical lung cancer specimens. PLoS One 6, e19601.Google Scholar

  • Sarhadi, V.K., Lahti, L., Scheinin, I., Tyybakinoja, A., Savola, S., Usvasalo, A., Raty, R., Elonen, E., Ellonen, P., Saarinen-Pihkala, U.M., et al. (2013). Targeted resequencing of 9p in acute lymphoblastic leukemia yields concordant results with array CGH and reveals novel genomic alterations. Genomics 102, 182–188.CrossrefWeb of ScienceGoogle Scholar

  • Schrauwen, I., Sommen, M., Corneveaux, J.J., Reiman, R.A., Hackett, N.J., Claes, C., Claes, K., Bitner-Glindzicz, M., Coucke, P., Van, C.G., et al. (2013). A sensitive and specific diagnostic test for hearing loss using a microdroplet PCR-based approach and next generation sequencing. Am. J. Med. Genet. A 161A, 145–152.Google Scholar

  • Schweiger, M.R., Kerick, M., Timmermann, B., Albrecht, M.W., Borodina, T., Parkhomchuk, D., Zatloukal, K., and Lehrach, H. (2009). Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One 4, e5548.Google Scholar

  • Shendure, J. and Lieberman, A.E. (2012). The expanding scope of DNA sequencing. Nat. Biotechnol. 30, 1084–1094.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Singh, R.R., Patel, K.P., Routbort, M.J., Reddy, N.G., Barkoh, B.A., Handal, B., Kanagal-Shamanna, R., Greaves, W.O., Medeiros, L.J., Aldape, K.D., et al. (2013). Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J. Mol. Diagn. 15, 607–622.CrossrefGoogle Scholar

  • Wagle, N., Berger, M.F., Davis, M.J., Blumenstiel, B., Defelice, M., Pochanard, P., Ducar, M., Van, H.P., Macconaill, L.E., Hahn, W.C., et al. (2012). High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2, 82–93.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Walsh, T., Lee, M.K., Casadei, S., Thornton, A.M., Stray, S.M., Pennil, C., Nord, A.S., Mandell, J.B., Swisher, E.M., and King, M.C. (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc. Natl. Acad. Sci. USA 107, 12629–12633.CrossrefWeb of ScienceGoogle Scholar

  • Wieczorek, D., Bogershausen, N., Beleggia, F., Steiner-Haldenstatt, S., Pohl, E., Li, Y., Milz, E., Martin, M., Thiele, H., Altmuller, J., et al. (2013). A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum. Mol. Genet. DOI: 10.1093/hmg/ddt366. [Epub ahead of print].CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Corresponding author: Janine Altmüller, Cologne Center for Genomics, University of Cologne, D-50931 Cologne, Germany, e-mail:


Received: 2013-06-17

Accepted: 2013-08-30

Published Online: 2013-09-05

Published in Print: 2014-02-01


Citation Information: Biological Chemistry, Volume 395, Issue 2, Pages 231–237, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0199.

Export Citation

©2014 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Virginia Valentini, Veronica Zelli, Piera Rizzolo, Valentina Silvestri, Maurizio Alimandi, Maria Michela D'Aloia, Sandra Giustini, Stefano Calvieri, Antonio Giovanni Richetta, Giovanni Monteleone, and Laura Ottini
Clinical Case Reports, 2018
[2]
Stacy S. Hung, Barbara Meissner, Elizabeth A. Chavez, Susana Ben-Neriah, Daisuke Ennishi, Martin R. Jones, Hennady P. Shulha, Fong Chun Chan, Merrill Boyle, Robert Kridel, Randy D. Gascoyne, Andrew J. Mungall, Marco A. Marra, David W. Scott, Joseph M. Connors, and Christian Steidl
The Journal of Molecular Diagnostics, 2018
[3]
Haiyan E. Liu, Melanie Triboulet, Amin Zia, Meghah Vuppalapaty, Evelyn Kidess-Sigal, John Coller, Vanita S. Natu, Vida Shokoohi, James Che, Corinne Renier, Natalie H. Chan, Violet R. Hanft, Stefanie S. Jeffrey, and Elodie Sollier-Christen
npj Genomic Medicine, 2017, Volume 2, Number 1
[4]
Mari Mori, Gloria Haskell, Zoheb Kazi, Xiaolin Zhu, Stephanie M. DeArmey, Jennifer L. Goldstein, Deeksha Bali, Catherine Rehder, Elizabeth T. Cirulli, and Priya S. Kishnani
Molecular Genetics and Metabolism, 2017
[5]
J. Najm, M. Rath, W. Schröder, and U. Felbor
Hämostaseologie, 2017, Volume 99, Number 99
[6]
Matthias Rath, Sönke E. Jenssen, Konrad Schwefel, Stefanie Spiegler, Dana Kleimeier, Christian Sperling, Lars Kaderali, and Ute Felbor
European Journal of Medical Genetics, 2017, Volume 60, Number 9, Page 479
[7]
Nereida Bravo-Gil, Cristina Méndez-Vidal, Laura Romero-Pérez, María González-del Pozo, Enrique Rodríguez-de la Rúa, Joaquín Dopazo, Salud Borrego, and Guillermo Antiñolo
Scientific Reports, 2016, Volume 6, Number 1
[8]
C. Lacoste, A. Fabre, C. Pécheux, N. Lévy, M. Krahn, P. Malzac, N. Bonello-Palot, C. Badens, and P. Bourgeois
Archives de Pédiatrie, 2017, Volume 24, Number 4, Page 373
[9]
Maria G. Andreassi and Alessandro Della Corte
Current Opinion in Cardiology, 2016, Volume 31, Number 6, Page 585
[10]
Johannes Dapprich, Deborah Ferriola, Kate Mackiewicz, Peter M. Clark, Eric Rappaport, Monica D’Arcy, Ariella Sasson, Xiaowu Gai, Jonathan Schug, Klaus H. Kaestner, and Dimitri Monos
BMC Genomics, 2016, Volume 17, Number 1
[11]
M. Niedzicka, A. Fijarczyk, K. Dudek, M. Stuglik, and W. Babik
Scientific Reports, 2016, Volume 6, Number 1
[12]
Sadaf Badar, Fabiana Busti, Alberto Ferrarini, Luciano Xumerle, Paolo Bozzini, Paola Capelli, Roberto Pozzi-Mucelli, Natascia Campostrini, Giovanna De Matteis, Sergio Marin Vargas, Alejandro Giorgetti, Massimo Delledonne, Oliviero Olivieri, and Domenico Girelli
American Journal of Hematology, 2016, Volume 91, Number 4, Page 420
[13]
Di Shao, Yongping Lin, Jilong Liu, Liang Wan, Zu Liu, Shaomin Cheng, Lingna Fei, Rongqing Deng, Jian Wang, Xi Chen, Liping Liu, Xia Gu, Wenhua Liang, Ping He, Jun Wang, Mingzhi Ye, and Jianxing He
Scientific Reports, 2016, Volume 6, Number 1
[14]
Kamel Jabbari and Peter Nürnberg
Genomics, 2016, Volume 108, Number 1, Page 31
[15]
Asude Alpman Durmaz, Emin Karaca, Urszula Demkow, Gokce Toruner, Jacqueline Schoumans, and Ozgur Cogulu
BioMed Research International, 2015, Volume 2015, Page 1
[16]
R.J. Pengelly, R. Upstill-Goddard, L. Arias, J. Martinez, J. Gibson, M. Knut, A.L. Collins, S. Ennis, A. Collins, and I. Briceno
Clinical Genetics, 2015, Volume 88, Number 5, Page 441
[17]
Tom J de Koning, Jan DH Jongbloed, Birgit Sikkema-Raddatz, and Richard J Sinke
Expert Review of Molecular Diagnostics, 2015, Volume 15, Number 1, Page 61
[18]
Leslie G. Biesecker and Robert C. Green
New England Journal of Medicine, 2014, Volume 370, Number 25, Page 2418

Comments (0)

Please log in or register to comment.
Log in