Bakker, E. (2006). Is the DNA sequence the gold standard in genetic testing? Quality of molecular genetic tests assessed. Clin. Chem. 52, 557–558.PubMedCrossrefGoogle Scholar
Becker, K., Vollbrecht, C., Koitzsch, U., Koenig, K., Fassunke, J., Huss, S., Nuernberg, P., Heukamp, L.C., Buettner, R., Odenthal, M., et al. (2013). Deep ion sequencing of amplicon adapter ligated libraries: a novel tool in molecular diagnostics of formalin fixed and paraffin embedded tissues. J. Clin. Pathol. 66, 803–806.CrossrefWeb of ScienceGoogle Scholar
Charlesworth, G., Plagnol, V., Holmstrom, K.M., Bras, J., Sheerin, U.M., Preza, E., Rubio-Agusti, I., Ryten, M., Schneider, S.A., Stamelou, M., et al. (2012). Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am. J. Hum. Genet. 91, 1041–1050.Web of ScienceGoogle Scholar
Costa, J.L., Sousa, S., Justino, A., Kay, T., Fernandes, S., Cirnes, L., Schmitt, F., and Machado, J.C. (2013). Nonoptical massive parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic setting. Hum. Mutat. 34, 629–635.Web of ScienceGoogle Scholar
Dames, S., Chou, L.S., Xiao, Y., Wayman, T., Stocks, J., Singleton, M., Eilbeck, K., and Mao, R. (2013). The development of next-generation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mitochondrial disorders. J. Mol. Diagn. 15, 526–534.Google Scholar
Duncavage, E.J., Abel, H.J., Szankasi, P., Kelley, T.W., and Pfeifer, J.D. (2012). Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Modern Pathol. 25, 795–804.Web of ScienceCrossrefGoogle Scholar
Feng, B.J., Tavtigian, S.V., Southey, M.C., and Goldgar, D.E. (2011). Design considerations for massively parallel sequencing studies of complex human disease. PLoS One 6, e23221.Google Scholar
Forshew, T., Murtaza, M., Parkinson, C., Gale, D., Tsui, D.W., Kaper, F., Dawson, S.J., Piskorz, A.M., Jimenez-Linan, M., Bentley, D., et al. (2012). Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra68.Web of ScienceGoogle Scholar
Gargis, A.S., Kalman, L., Berry, M.W., Bick, D.P., Dimmock, D.P., Hambuch, T., Lu, F., Lyon, E., Voelkerding, K.V., Zehnbauer, B.A., et al. (2012). Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol. 30, 1033–1036.CrossrefGoogle Scholar
Hiatt, J.B., Pritchard, C.C., Salipante, S.J., O’Roak, B.J., and Shendure, J. (2013). Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 23, 843–854.Web of ScienceCrossrefGoogle Scholar
Hollants, S., Redeker, E.J., and Matthijs, G. (2012). Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin. Chem. 58, 717–724.PubMedCrossrefWeb of ScienceGoogle Scholar
Hubers, A.J., Heideman, D.A., Yatabe, Y., Wood, M.D., Tull, J., Taron, M., Molina, M.A., Mayo, C., Bertran-Alamillo, J., Herder, G.J., et al. (2013). EGFR mutation analysis in sputum of lung cancer patients: a multitechnique study. Lung Cancer. DOI: 10.1016/j.lungcan.2013.07.011. [Epub ahead of print].CrossrefGoogle Scholar
Huebner, A.K., Gandia, M., Frommolt, P., Maak, A., Wicklein, E.M., Thiele, H., Altmuller, J., Wagner, F., Vinuela, A., Aguirre, L.A., et al. (2011). Nonsense mutations in SMPX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am. J. Hum. Genet. 88, 621–627.Web of ScienceCrossrefGoogle Scholar
Johansson, H., Isaksson, M., Sorqvist, E.F., Roos, F., Stenberg, J., Sjoblom, T., Botling, J., Micke, P., Edlund, K., Fredriksson, S., et al. (2011). Targeted resequencing of candidate genes using selector probes. Nucleic Acids Res. 39, e8.Web of ScienceCrossrefGoogle Scholar
Kalender, A.Z., De, K.K., Gianfelici, V., Geerdens, E., Vandepoel, R., Pauwels, D., Porcu, M., Lahortiga, I., Brys, V., Dirks, W.G., et al. (2012). High accuracy mutation detection in leukemia on a selected panel of cancer genes. PLoS One 7, e38463.Google Scholar
Katsanis, S.H. and Katsanis, N. (2013). Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 14, 415–426.PubMedCrossrefWeb of ScienceGoogle Scholar
Kerick, M., Isau, M., Timmermann, B., Sultmann, H., Herwig, R., Krobitsch, S., Schaefer, G., Verdorfer, I., Bartsch, G., Klocker, H., et al. (2011). Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. Med. Genomics 4, 68.CrossrefWeb of ScienceGoogle Scholar
Ku, C.S., Cooper, D.N., Iacopetta, B., and Roukos, D.H. (2013). Integrating next-generation sequencing into the diagnostic testing of inherited cancer predisposition. Clin. Genet. 83, 2–6.PubMedGoogle Scholar
Lal, D., Becker, K., Motameny, S., Altmuller, J., Thiele, H., Nurnberg, P., Ahting, U., Rolinski, B., Neubauer, B.A., and Hahn, A. (2013). Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics 14, 85–87.CrossrefPubMedWeb of ScienceGoogle Scholar
Lee, J.E., Choi, J.H., Lee, J.H., and Lee, M.G. (2005). Gene SNPs and mutations in clinical genetic testing: haplotype-based testing and analysis. Mutat. Res. 573, 195–204.PubMedGoogle Scholar
Lopes, L.R., Zekavati, A., Syrris, P., Hubank, M., Giambartolomei, C., Dalageorgou, C., Jenkins, S., McKenna, W., Plagnol, V., and Elliott, P.M. (2013). Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet. 50, 228–239.CrossrefGoogle Scholar
Mertes, F., Elsharawy, A., Sauer, S., van Helvoort, J.M., van der Zaag, P.J., Franke, A., Nilsson, M., Lehrach, H., and Brookes, A.J. (2011). Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief. Funct. Genomics 10, 374–386.CrossrefWeb of ScienceGoogle Scholar
Querings, S., Altmuller, J., Ansen, S., Zander, T., Seidel, D., Gabler, F., Peifer, M., Markert, E., Stemshorn, K., Timmermann, B., et al. (2011). Benchmarking of mutation diagnostics in clinical lung cancer specimens. PLoS One 6, e19601.Google Scholar
Sarhadi, V.K., Lahti, L., Scheinin, I., Tyybakinoja, A., Savola, S., Usvasalo, A., Raty, R., Elonen, E., Ellonen, P., Saarinen-Pihkala, U.M., et al. (2013). Targeted resequencing of 9p in acute lymphoblastic leukemia yields concordant results with array CGH and reveals novel genomic alterations. Genomics 102, 182–188.CrossrefWeb of ScienceGoogle Scholar
Schrauwen, I., Sommen, M., Corneveaux, J.J., Reiman, R.A., Hackett, N.J., Claes, C., Claes, K., Bitner-Glindzicz, M., Coucke, P., Van, C.G., et al. (2013). A sensitive and specific diagnostic test for hearing loss using a microdroplet PCR-based approach and next generation sequencing. Am. J. Med. Genet. A 161A, 145–152.Google Scholar
Schweiger, M.R., Kerick, M., Timmermann, B., Albrecht, M.W., Borodina, T., Parkhomchuk, D., Zatloukal, K., and Lehrach, H. (2009). Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One 4, e5548.Google Scholar
Shendure, J. and Lieberman, A.E. (2012). The expanding scope of DNA sequencing. Nat. Biotechnol. 30, 1084–1094.PubMedWeb of ScienceCrossrefGoogle Scholar
Singh, R.R., Patel, K.P., Routbort, M.J., Reddy, N.G., Barkoh, B.A., Handal, B., Kanagal-Shamanna, R., Greaves, W.O., Medeiros, L.J., Aldape, K.D., et al. (2013). Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J. Mol. Diagn. 15, 607–622.CrossrefGoogle Scholar
Wagle, N., Berger, M.F., Davis, M.J., Blumenstiel, B., Defelice, M., Pochanard, P., Ducar, M., Van, H.P., Macconaill, L.E., Hahn, W.C., et al. (2012). High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2, 82–93.PubMedWeb of ScienceCrossrefGoogle Scholar
Walsh, T., Lee, M.K., Casadei, S., Thornton, A.M., Stray, S.M., Pennil, C., Nord, A.S., Mandell, J.B., Swisher, E.M., and King, M.C. (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc. Natl. Acad. Sci. USA 107, 12629–12633.CrossrefWeb of ScienceGoogle Scholar
Wieczorek, D., Bogershausen, N., Beleggia, F., Steiner-Haldenstatt, S., Pohl, E., Li, Y., Milz, E., Martin, M., Thiele, H., Altmuller, J., et al. (2013). A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum. Mol. Genet. DOI: 10.1093/hmg/ddt366. [Epub ahead of print].CrossrefPubMedWeb of ScienceGoogle Scholar
Comments (0)