Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 395, Issue 3


Crosstalk of lipid and protein homeostasis to maintain membrane function

Claudius Stordeur
  • Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
  • These authors contributed equally to this article.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kristina Puth
  • Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
  • These authors contributed equally to this article.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James P. Sáenz / Robert Ernst
  • Corresponding author
  • Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-23 | DOI: https://doi.org/10.1515/hsz-2013-0235


Biological membranes are a defining feature of cellular life. They serve as selective diffusion barriers, compartmentalize biochemical processes and protect the cellular milieu. We are only beginning to understand the principles underlying their homeostasis and the functional relevance of their complex compositions. Here, we summarize some recent evidences that suggest an intense crosstalk between the pathways of protein quality control and lipid homeostasis. We discuss paradigms of lipid regulation by protein degradation machineries and highlight the intricate connections between lipid droplet morphology, membrane biogenesis and ER-stress.

Keywords: ER-associated degradation (ERAD); ER-stress; lipid droplets; UBXD8; UBX2; unfolded protein response (UPR)


  • Alberts, S.M., Sonntag, C., Schafer, A., and Wolf, D.H. (2009). Ubx4 modulates Cdc48 activity and influences degradation of misfolded proteins of the endoplasmic reticulum. J. Biol. Chem. 284, 16082–16089.Google Scholar

  • Alexandru, G., Graumann, J., Smith, G.T., Kolawa, N.J., Fang, R., and Deshaies, R.J. (2008). UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 134, 804–816.Google Scholar

  • Auld, K.L. and Silver, P.A. (2006). Transcriptional regulation by the proteasome as a mechanism for cellular protein homeostasis. Cell Cycle 5, 1503–1505.CrossrefPubMedGoogle Scholar

  • Bernales, S., McDonald, K.L., and Walter, P. (2006a). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423.CrossrefGoogle Scholar

  • Bernales, S., Papa, F.R., and Walter, P. (2006b). Intracellular signaling by the unfolded protein response. Annu. Rev. Cell Dev. Biol. 22, 487–508.PubMedCrossrefGoogle Scholar

  • Bernales, S., Schuck, S., and Walter, P. (2007). ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285–287.PubMedGoogle Scholar

  • Bhattacharya, S., Shcherbik, N., Vasilescu, J., Smith, J.C., Figeys, D., and Haines, D.S. (2009). Identification of lysines within membrane-anchored Mga2p120 that are targets of Rsp5p ubiquitination and mediate mobilization of tethered Mga2p90. J. Mol. Biol. 385, 718–725.Google Scholar

  • Bigay, J. and Antonny, B. (2012). Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886–895.CrossrefPubMedGoogle Scholar

  • Braun, S., Matuschewski, K., Rape, M., Thoms, S., and Jentsch, S. (2002). Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 21, 615–621.CrossrefGoogle Scholar

  • Bretscher, M.S. and Munro, S. (1993). Cholesterol and the Golgi apparatus. Science 261, 1280–1281.Google Scholar

  • Brown, M.S. and Goldstein, J.L. (2009). Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J. Lipid Res. 50, S15–S27.Google Scholar

  • Buchberger, A., Howard, M.J., Proctor, M., and Bycroft, M. (2001). The UBX domain: a widespread ubiquitin-like module. J. Mol. Biol. 307, 17–24.Google Scholar

  • Carvalho, P., Goder, V., and Rapoport, T.A. (2006). Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373.Google Scholar

  • Chellappa, R., Kandasamy, P., Oh, C.S., Jiang, Y., Vemula, M., and Martin, C.E. (2001). The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. Fatty acid-mediated regulation of Mga2p activity is independent of its proteolytic processing into a soluble transcription activator. J. Biol. Chem. 276, 43548–43556.Google Scholar

  • Coskun, U., Grzybek, M., Drechsel, D., and Simons, K. (2011). Regulation of human EGF receptor by lipids. Proc. Natl. Acad. Sci. USA 108, 9044–9048.Google Scholar

  • Cox, J.S., Shamu, C.E., and Walter, P. (1993). Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206.Google Scholar

  • Dowhan, W. and Bogdanov, M. (2009). Lipid-dependent membrane protein topogenesis. Annu. Rev. Biochem. 78, 515–540.CrossrefPubMedGoogle Scholar

  • Ejsing, C.S., Sampaio, J.L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R.W., Simons, K., and Shevchenko, A. (2009). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. USA 106, 2136–2141.CrossrefGoogle Scholar

  • Elbaz, Y. and Schuldiner, M. (2011). Staying in touch: the molecular era of organelle contact sites. Trends Biochem. Sci. 36, 616–623.CrossrefPubMedGoogle Scholar

  • English, A.R. and Voeltz, G.K. (2013). Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb. Perspect. Biol. 5, a013227.Google Scholar

  • Ernst, R., Mueller, B., Ploegh, H.L., and Schlieker, C. (2009). The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell 36, 28–38.Google Scholar

  • Ernst, R., Claessen, J.H., Mueller, B., Sanyal, S., Spooner, E., van der Veen, A.G., Kirak, O., Schlieker, C.D., Weihofen, W.A., and Ploegh, H.L. (2011). Enzymatic blockade of the ubiquitin-proteasome pathway. PLoS Biol. 8, e1000605.CrossrefGoogle Scholar

  • Fei, W., Wang, H., Fu, X., Bielby, C., and Yang, H. (2009). Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem. J. 424, 61–67.CrossrefGoogle Scholar

  • Foresti, O., Ruggiano, A., Hannibal-Bach, H.K., Ejsing, C.S., and Carvalho, P. (2013). Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. eLife 2, e00953.Google Scholar

  • Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., Lin, X., Watkins, S.M., Ivanov, A.R., and Hotamisligil, G.S. (2011). Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531.Google Scholar

  • Goldstein, J.L., DeBose-Boyd, R.A., and Brown, M.S. (2006). Protein sensors for membrane sterols. Cell 124, 35–46.CrossrefPubMedGoogle Scholar

  • Grillitsch, K., Connerth, M., Kofeler, H., Arrey, T.N., Rietschel, B., Wagner, B., Karas, M., and Daum, G. (2011). Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim. Biophys. Acta 1811, 1165–1176.Google Scholar

  • Hammond, G.R., Fischer, M.J., Anderson, K.E., Holdich, J., Koteci, A., Balla, T., and Irvine, R.F. (2012). PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337, 727–730.Google Scholar

  • Hampton, R.Y., Gardner, R.G., and Rine, J. (1996). Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044.Google Scholar

  • Han, X. and Gross, R.W. (2005). Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 24, 367–412.CrossrefGoogle Scholar

  • Han, S., Lone, M.A., Schneiter, R., and Chang, A. (2010). Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl. Acad. Sci. USA 107, 5851–5856.CrossrefGoogle Scholar

  • Henry, S.A., Kohlwein, S.D., and Carman, G.M. (2012). Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190, 317–349.Google Scholar

  • Hoppe, T., Matuschewski, K., Rape, M., Schlenker, S., Ulrich, H.D., and Jentsch, S. (2000). Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586.Google Scholar

  • Jacquier, N., Choudhary, V., Mari, M., Toulmay, A., Reggiori, F., and Schneiter, R. (2011). Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 124, 2424–2437.CrossrefGoogle Scholar

  • Jonikas, M.C., Collins, S.R., Denic, V., Oh, E., Quan, E.M., Schmid, V., Weibezahn, J., Schwappach, B., Walter, P., Weissman, J.S., et al. (2009). Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697.Google Scholar

  • Kaiser, H.J., Orlowski, A., Rog, T., Nyholm, T.K., Chai, W., Feizi, T., Lingwood, D., Vattulainen, I., and Simons, K. (2011). Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl. Acad. Sci. USA 108, 16628–16633.CrossrefGoogle Scholar

  • Kandasamy, P., Vemula, M., Oh, C.S., Chellappa, R., and Martin, C.E. (2004). Regulation of unsaturated fatty acid biosynthesis in Saccharomyces: the endoplasmic reticulum membrane protein, Mga2p, a transcription activator of the OLE1 gene, regulates the stability of the OLE1 mRNA through exosome-mediated mechanisms. J. Biol. Chem. 279, 36586–36592.Google Scholar

  • Kim, H., Zhang, H., Meng, D., Russell, G., Lee, J.N., and Ye, J. (2013). UAS domain of Ubxd8 and FAF1 polymerizes upon interaction with long-chain unsaturated fatty acids. J. Lipid Res. 54, 2144–2152.CrossrefGoogle Scholar

  • Klemm, R.W., Ejsing, C.S., Surma, M.A., Kaiser, H.J., Gerl, M.J., Sampaio, J.L., de Robillard, Q., Ferguson, C., Proszynski, T.J., Shevchenko, A., et al. (2009). Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185, 601–612.Google Scholar

  • Klemm, E.J., Spooner, E., and Ploegh, H.L. (2011). Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 286, 37602–37614.CrossrefGoogle Scholar

  • Klose, C., Surma, M.A., and Simons, K. (2013). Organellar lipidomics – background and perspectives. Curr. Opin. Cell Biol. 25, 406–413.PubMedCrossrefGoogle Scholar

  • Kohlwein, S.D., Veenhuis, M., and van der Klei, I.J. (2013). Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat – store ’em up or burn ’em down. Genetics 193, 1–50.Google Scholar

  • Kolawa, N.J., Sweredoski, M.J., Graham, R.L.J., Oania, R., Hess, S., and Deshaies, R.J. (2013). Perturbations to the ubiquitin conjugate proteome in yeast Δubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol. Cell Proteomics 12, 2791–2803.PubMedCrossrefGoogle Scholar

  • Korennykh, A. and Walter, P. (2012). Structural basis of the unfolded protein response. Annu. Rev. Cell Dev. Biol. 28, 251–277.CrossrefPubMedGoogle Scholar

  • Krumpe, K., Frumkin, I., Herzig, Y., Rimon, N., Ozbalci, C., Brugger, B., Rapaport, D., and Schuldiner, M. (2012). Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Mol. Biol. Cell 23, 3927–3935.CrossrefPubMedGoogle Scholar

  • Lajoie, P., Moir, R.D., Willis, I.M., and Snapp, E.L. (2012). Kar2p availability defines distinct forms of endoplasmic reticulum stress in living cells. Mol. Biol. Cell 23, 955–964.CrossrefGoogle Scholar

  • Lee, J.N., Zhang, X., Feramisco, J.D., Gong, Y., and Ye, J. (2008). Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step. J. Biol. Chem. 283, 33772–33783.Google Scholar

  • Lee, J.N., Kim, H., Yao, H., Chen, Y., Weng, K., and Ye, J. (2010). Identification of Ubxd8 protein as a sensor for unsaturated fatty acids and regulator of triglyceride synthesis. Proc. Natl. Acad. Sci. USA 107, 21424–21429.CrossrefGoogle Scholar

  • Lin, J.H., Walter, P., and Yen, T.S. (2008). Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425.CrossrefPubMedGoogle Scholar

  • Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Jr., Ory, D.S., and Schaffer, J.E. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 100, 3077–3082.CrossrefGoogle Scholar

  • Loewen, C.J., Gaspar, M.L., Jesch, S.A., Delon, C., Ktistakis, N.T., Henry, S.A., and Levine, T.P. (2004). Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304, 1644–1647.Google Scholar

  • Martin, C.E., Oh, C.S., and Jiang, Y. (2007). Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim. Biophys. Acta 1771, 271–285.Google Scholar

  • Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. (2005). ERAD: the long road to destruction. Nat. Cell Biol. 7, 766–772.CrossrefGoogle Scholar

  • Meyer, H., Bug, M., and Bremer, S. (2012). Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123.PubMedGoogle Scholar

  • Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G., and Engelman, D.M. (2004). Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. USA 101, 4083–4088.CrossrefGoogle Scholar

  • Mueller, B., Klemm, E.J., Spooner, E., Claessen, J.H., and Ploegh, H.L. (2008). SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA 105, 12325–12330.Google Scholar

  • Needham, P.G. and Brodsky, J.L. (2013). How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. Biochim. Biophys. Acta 1833, 2447–2457.Google Scholar

  • Neuber, O., Jarosch, E., Volkwein, C., Walter, J., and Sommer, T. (2005). Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat. Cell Biol. 7, 993–998.CrossrefGoogle Scholar

  • Nilsson, I., Ohvo-Rekila, H., Slotte, J.P., Johnson, A.E., and von Heijne, G. (2001). Inhibition of protein translocation across the endoplasmic reticulum membrane by sterols. J. Biol. Chem. 276, 41748–41754.Google Scholar

  • Olzmann, J.A. and Kopito, R.R. (2011). Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J. Biol. Chem. 286, 27872–27874.CrossrefGoogle Scholar

  • Olzmann, J.A., Richter, C.M., and Kopito, R.R. (2013). Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. USA 110, 1345–1350.Google Scholar

  • Park, E. and Rapoport, T.A. (2012). Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu. Rev. Biophys. 41, 21–40.CrossrefGoogle Scholar

  • Petschnigg, J., Wolinski, H., Kolb, D., Zellnig, G., Kurat, C.F., Natter, K., and Kohlwein, S.D. (2009). Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J. Biol. Chem. 284, 30981–30993.Google Scholar

  • Piehler, J., Thomas, C., Garcia, K.C., and Schreiber, G. (2012). Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol. Rev. 250, 317–334.Google Scholar

  • Ploegh, H.L. (2007). A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448, 435–438.Google Scholar

  • Promlek, T., Ishiwata-Kimata, Y., Shido, M., Sakuramoto, M., Kohno, K., and Kimata, Y. (2011). Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol. Biol. Cell 22, 3520–3532.CrossrefGoogle Scholar

  • Radhakrishnan, A., Goldstein, J.L., McDonald, J.G., and Brown, M.S. (2008). Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 8, 512–521.PubMedCrossrefGoogle Scholar

  • Rape, M., Hoppe, T., Gorr, I., Kalocay, M., Richly, H., and Jentsch, S. (2001). Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677.CrossrefGoogle Scholar

  • Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., and Jentsch, S. (2005). A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84.Google Scholar

  • Rodriguez-Boulan, E. and Powell, S.K. (1992). Polarity of epithelial and neuronal cells. Annu. Rev. Cell Biol. 8, 395–427.Google Scholar

  • Sampaio, J.L., Gerl, M.J., Klose, C., Ejsing, C.S., Beug, H., Simons, K., and Shevchenko, A. (2011). Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. USA 108, 1903–1907.CrossrefGoogle Scholar

  • Schaffer, J.E. (2003). Lipotoxicity: when tissues overeat. Curr. Opin. Lipidol. 14, 281–287.PubMedCrossrefGoogle Scholar

  • Schuberth, C. and Buchberger, A. (2005). Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat. Cell Biol. 7, 999–1006.CrossrefGoogle Scholar

  • Schuck, S., Prinz, W.A., Thorn, K.S., Voss, C., and Walter, P. (2009). Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187, 525–536.Google Scholar

  • Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J.F., et al. (2005). Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519.Google Scholar

  • Sharpe, H.J., Stevens, T.J., and Munro, S. (2010). A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169.Google Scholar

  • Shcherbik, N. and Haines, D.S. (2007). Cdc48p(Npl4p/Ufd1p) binds and segregates membrane-anchored/tethered complexes via a polyubiquitin signal present on the anchors. Mol. Cell 25, 385–397.Google Scholar

  • Shcherbik, N., Zoladek, T., Nickels, J.T., and Haines, D.S. (2003). Rsp5p is required for ER bound Mga2p120 polyubiquitination and release of the processed/tethered transactivator Mga2p90. Curr. Biol. 13, 1227–1233.CrossrefGoogle Scholar

  • Shevchenko, A. and Simons, K. (2010). Lipidomics: coming to grips with lipid diversity. Nature Rev. Mol. Cell Biol. 11, 593–598.CrossrefGoogle Scholar

  • Shuai, K. and Liu, B. (2003). Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900–911.PubMedCrossrefGoogle Scholar

  • Simons, K. and Gerl, M.J. (2010). Revitalizing membrane rafts: new tools and insights. Nature Rev. Mol. Cell Biol. 11, 688–699.CrossrefGoogle Scholar

  • Spandl, J., Lohmann, D., Kuerschner, L., Moessinger, C., and Thiele, C. (2011). Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J. Biol. Chem. 286, 5599–5606.Google Scholar

  • Stolz, A., Hilt, W., Buchberger, A., and Wolf, D.H. (2011). Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36, 515–523.CrossrefGoogle Scholar

  • Stukey, J.E., McDonough, V.M., and Martin, C.E. (1990). The OLE1 gene of Saccharomyces cerevisiae encodes the Δ9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J. Biol. Chem. 265, 20144–20149.Google Scholar

  • Surma, M.A., Klose, C., Peng, D., Shales, M., Mrejen, C., Stefanko, A., Braberg, H., Gordon, D.E., Vorkel, D., Ejsing, C.S., et al. (2013). A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol. Cell 51, 519–530.CrossrefGoogle Scholar

  • Thibault, G., Shui, G., Kim, W., McAlister, G.C., Ismail, N., Gygi, S.P., Wenk, M.R., and Ng, D.T. (2012). The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. Mol. Cell 48, 16–27.CrossrefPubMedGoogle Scholar

  • Thomas, C., Moraga, I., Levin, D., Krutzik, P.O., Podoplelova, Y., Trejo, A., Lee, C., Yarden, G., Vleck, S.E., Glenn, J.S., et al. (2011). Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 146, 621–632.Google Scholar

  • van Meer, G., Voelker, D.R., and Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124.CrossrefGoogle Scholar

  • Varshavsky, A. (1997). The ubiquitin system. Trends Biochem. Sci. 22, 383–387.CrossrefPubMedGoogle Scholar

  • Volmer, R., van der Ploeg, K., and Ron, D. (2013). Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl. Acad. Sci. USA 110, 4628–4633.Google Scholar

  • von Heijne, G. (1989). Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456–458.Google Scholar

  • Walter, P. and Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086.Google Scholar

  • Wang, C.W. and Lee, S.C. (2012). The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J. Cell Sci. 125, 2930–2939.CrossrefGoogle Scholar

  • Wenk, M.R. (2005). The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610.PubMedCrossrefGoogle Scholar

  • Werstuck, G.H., Lentz, S.R., Dayal, S., Hossain, G.S., Sood, S.K., Shi, Y.Y., Zhou, J., Maeda, N., Krisans, S.K., Malinow, M.R., et al. (2001). Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J. Clin. Invest. 107, 1263–1273.CrossrefGoogle Scholar

  • Xu, G., Sztalryd, C., Lu, X., Tansey, J.T., Gan, J., Dorward, H., Kimmel, A.R., and Londos, C. (2005). Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J. Biol. Chem. 280, 42841–42847.Google Scholar

  • Yamamoto, K., Takahara, K., Oyadomari, S., Okada, T., Sato, T., Harada, A., and Mori, K. (2010). Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell 21, 2975–2986.Google Scholar

About the article

Claudius Stordeur

Claudius Stordeur studied Biochemistry at the Martin-Luther-University Halle-Wittenberg and received his PhD for the creation and selection of novel, artificial binding proteins. Since March 2013 he has been a member of the Molecular Membrane Biology group at the Goethe University, Frankfurt. He is interested in the molecular mechanisms of lipid sensing.

Kristina Puth

Kristina Puth finished her studies in Biochemistry at the Goethe University Frankfurt and received her Diploma in 2012. Since 2012, she has been a PhD student in the Molecular Membrane Biology group at the Goethe University, Frankfurt and focuses on the molecular basis of lipid-induced ER-stress responses.

James P. Sáenz

James Saenz received his PhD from the MIT-WHOI Joint Program in Chemical Oceanography and is presently a postdoctoral fellow at the MPI-CBG in the group of Prof. Kai Simons. James’ research interests address the natural history and evolution of the membrane and center on understanding the evolutionary basis for lipid structural diversity. For his postdoctoral research he is studying the properties and functions of a class of bacterial ‘sterol surrogates’ called hopanoids.

Robert Ernst

Robert Ernst received his PhD from the University of Düsseldorf. In his postdoctoral phase at the Whitehead Institute for Biomedical Research, he studied mechanisms of protein quality control and degradation. He then moved to the laboratory of Kai Simons to study the complex interplay of lipid and protein homeostasis. Since 2012, Robert Ernst has been an Emmy Noether fellow and is principle investigator of the Molecular Membrane Biology group at the Goethe University, Frankfurt.

Corresponding author: Robert Ernst, Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany, e-mail:

Received: 2013-07-31

Accepted: 2013-10-21

Published Online: 2013-10-23

Published in Print: 2014-03-01

Citation Information: Biological Chemistry, Volume 395, Issue 3, Pages 313–326, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0235.

Export Citation

©2014 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jahnabi Roy, Payam Dibaeinia, Timothy M. Fan, Saurabh Sinha, and Aditi Das
Journal of Lipid Research, 2019, Volume 60, Number 2, Page 375
Yanli Qi, Hui Liu, Xiulai Chen, and Liming Liu
Metabolic Engineering, 2019, Volume 53, Page 24
Hana Kimura, Kohei Arasaki, Yuki Ohsaki, Toyoshi Fujimoto, Takayuki Ohtomo, Junji Yamada, and Mitsuo Tagaya
Journal of Lipid Research, 2018, Volume 59, Number 5, Page 805
Deniz Kuscuoglu, Sabina Janciauskiene, Karim Hamesch, Johannes Haybaeck, Christian Trautwein, and Pavel Strnad
Journal of Hepatology, 2018
Kristina Halbleib, Kristina Pesek, Roberto Covino, Harald F. Hofbauer, Dorith Wunnicke, Inga Hänelt, Gerhard Hummer, and Robert Ernst
Molecular Cell, 2017, Volume 67, Number 4, Page 673
Robert Ernst, Christer S. Ejsing, and Bruno Antonny
Journal of Molecular Biology, 2016, Volume 428, Number 24, Page 4776
Roberto Covino, Stephanie Ballweg, Claudius Stordeur, Jonas B. Michaelis, Kristina Puth, Florian Wernig, Amir Bahrami, Andreas M. Ernst, Gerhard Hummer, and Robert Ernst
Molecular Cell, 2016, Volume 63, Number 1, Page 49

Comments (0)

Please log in or register to comment.
Log in