Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 395, Issue 5

Issues

Antagonizing leptin: current status and future directions

Lennart Zabeau
  • Flanders Institute for Biotechnology (VIB), Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frank Peelman
  • Flanders Institute for Biotechnology (VIB), Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Tavernier
  • Corresponding author
  • Flanders Institute for Biotechnology (VIB), Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-11 | DOI: https://doi.org/10.1515/hsz-2013-0283

Abstract

The adipocyte-derived hormone/cytokine leptin acts as a metabolic switch, connecting the body’s nutritional status to high energy consuming processes such as reproduction and immune responses. Inappropriate leptin responses can promote autoimmune diseases and tumorigenesis. In this review we discuss the current strategies to modulate leptin signaling and the possibilities for their use in research and therapy.

Keywords: antagonism; autoimmunity; leptin

References

  • Adriani, M., Garbi, C., Amodio, G., Russo, I., Giovannini, M., Amorosi, S., Matrecano, E., Cosentini, E., Candotti, F., and Pignata, C. (2006). Functional interaction of common-γ-chain and growth hormone receptor signaling apparatus. J. Immunol. 177, 6889–6895.Google Scholar

  • Andersson, U., Filipsson, K., Abbott, C.R., Woods, A., Smith, K., Bloom, S.R., Carling, D., and Small, C.J. (2004). AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279, 12005–12008.Google Scholar

  • Artwohl, M., Roden, M., Hölzenbein, T., Freudenthaler, A., Waldhäusl, W., and Baumgartner-Parzer, S.M. (2002). Modulation by leptin of proliferation and apoptosis in vascular endothelial cells. Int. J. Obes. Relat. Metab. Disord. 26, 577–580.Google Scholar

  • Attig, L., Solomon, G., Ferezou, J., Abdennebi-Najar, L., Taouis, M., Gertler, A., and Djiane, J. (2008). Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats. Int. J. Obes. (Lond). 32, 1153–1160.Google Scholar

  • Attig, L., Larcher, T., Gertler, A., Abdennebi-Najar, L., and Djiane, J. (2011). Postnatal leptin is necessary for maturation of numerous organs in newborn rats. Organogenesis 7, 88–94.CrossrefGoogle Scholar

  • Bado, A., Levasseur, S., Attoub, S., Kermorgant, S., Laigneau, J.P., Bortoluzzi, M.N., Moizo, L., Lehy, T., Guerre-Millo, M., Le Marchand-Brustel, Y., et al. (1998). The stomach is a source of leptin. Nature 394, 790–793.Google Scholar

  • Bahrenberg, G., Behrmann, I., Barthel, A., Hekerman, P., Heinrich, P.C., Joost, H.-G., and Becker, W. (2002). Identification of the critical sequence elements in the cytoplasmic domain of leptin receptor isoforms required for Janus kinase/signal transducer and activator of transcription activation by receptor heterodimers. Mol. Endocrinol. 16, 859–872.Google Scholar

  • Banks, A.S., Davis, S.M., Bates, S.H., and Myers, M.G. (2000). Activation of downstream signals by the long form of the leptin receptor. J. Biol. Chem. 275, 14563–14572.Google Scholar

  • Barness, L.A., Opitz, J.M., and Gilbert-Barness, E. (2007). Obesity: genetic, molecular, and environmental aspects. Am. J. Med. Genet. A 143A, 3016–3034.Google Scholar

  • Bates, S.H., Stearns, W.H., Dundon, T.A., Schubert, M., Tso, A.W., Wang, Y., Banks, A.S., Lavery, H.J., Haq, A.K., Maratos-Flier, E., et al. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859.Google Scholar

  • Baumann, H., Morella, K.K., White, D.W., Dembski, M., Bailon, P.S., Kim, H., Lai, C.F., and Tartaglia, L.A. (1996). The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl. Acad. Sci. USA 93, 8374–8378.Google Scholar

  • Bennett, B.D., Solar, G.P., Yuan, J.Q., Mathias, J., Thomas, G.R., and Matthews, W. (1996). A role for leptin and its cognate receptor in hematopoiesis. Curr. Biol. 6, 1170–1180.CrossrefGoogle Scholar

  • Bing, C., Taylor, S., Tisdale, M.J., and Williams, G. (2001). Cachexia in MAC16 adenocarcinoma: suppression of hunger despite normal regulation of leptin, insulin and hypothalamic neuropeptide Y. J. Neurochem. 79, 1004–1012.Google Scholar

  • Bjørbaek, C., Uotani, S., da Silva, B., and Flier, J.S. (1997). Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem. 272, 32686–32695.Google Scholar

  • Bjorbaek, C., Elmquist, J.K., Michl, P., Ahima, R.S., van Bueren, A., McCall, A.L., and Flier, J.S. (1998). Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 139, 3485–3491.Google Scholar

  • Bjørbaek, C., Buchholz, R.M., Davis, S.M., Bates, S.H., Pierroz, D.D., Gu, H., Neel, B.G., Myers, M.G., and Flier, J.S. (2001). Divergent roles of SHP-2 in ERK activation by leptin receptors. J. Biol. Chem. 276, 4747–4755.Google Scholar

  • Brines, M. (2010). The therapeutic potential of erythropoiesis-stimulating agents for tissue protection: a tale of two receptors. Blood Purif. 29, 86–92.Google Scholar

  • Brines, M., Grasso, G., Fiordaliso, F., Sfacteria, A., Ghezzi, P., Fratelli, M., Latini, R., Xie, Q.W., Smart, J., Su-Rick, C.J., et al. (2004). Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. USA 101, 14907–14912.Google Scholar

  • Brines, M., Patel, N.S., Villa, P., Brines, C., Mennini, T., De Paola, M., Erbayraktar, Z., Erbayraktar, S., Sepodes, B., Thiemermann, C., et al. (2008). Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc. Natl. Acad. Sci. USA 105, 10925–10930.Google Scholar

  • Burks, D.J., Font de Mora, J., Schubert, M., Withers, D.J., Myers, M.G., Towery, H.H., Altamuro, S.L., Flint, C.L., and White, M.F. (2000). IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407, 377–382.Google Scholar

  • Busso, N., So, A., Chobaz-Peclat, V., Morard, C., Martinez-soria, E., Talabot-ayer, D., and Gabay, C. (2002). Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. J. Immunol. 168, 875–882.Google Scholar

  • Caldefie-Chezet, F., Poulin, A., Tridon, A., Sion, B., and Vasson, M.P. (2001). Leptin: a potential regulator of polymorphonuclear neutrophil bactericidal action? J. Leukoc. Biol. 69, 414–418.Google Scholar

  • Caldefie-Chezet, F., Poulin, A., and Vasson, M.P. (2003). Leptin regulates functional capacities of polymorphonuclear neutrophils. Free Radic. Res. 37, 809–814.Google Scholar

  • Calle, E.E. (2007). Obesity and cancer. Br. Med. J. 335, 1107–1108.Google Scholar

  • Campión, J., Milagro, F., and Martínez, J.A. (2010). Epigenetics and obesity. Prog. Mol. Biol. Transl. Sci. 94, 291–347.CrossrefGoogle Scholar

  • Carpenter, L.R., Farruggella, T.J., Symes, A., Karow, M.L., Yancopoulos, G.D., and Stahl, N. (1998). Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc. Natl. Acad. Sci. USA 95, 6061–6066.CrossrefGoogle Scholar

  • Carpenter, B., Hemsworth, G.R., Wu, Z., Maamra, M., Strasburger, C.J., Ross, R.J., and Artymiuk, P.J. (2012). Structure of the human obesity receptor leptin-binding domain reveals the mechanism of leptin antagonism by a monoclonal antibody. Structure 20, 487–497.CrossrefGoogle Scholar

  • Catalano, S., Marsico, S., Giordano, C., Mauro, L., Rizza, P., Panno, M.L., and Andò, S. (2003). Leptin enhances, via AP- 1, expression of aromatase in the MCF-7 cell line. J. Biol. Chem. 278, 28668–28676.Google Scholar

  • Chapnik, N., Solomon, G., Genzer, Y., Miskin, R., Gertler, A., and Froy, O. (2013). A superactive leptin antagonist alters metabolism and locomotion in high-leptin mice. J. Endocrinol. 217, 283–290.Google Scholar

  • Chehab, F.F., Lim, M.E., and Lu, R. (1996). Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 12, 318–320.CrossrefGoogle Scholar

  • Cheung, W.W., Ding, W., Gunta, S.S., Gu, Y., Tabakman, R., Klapper, L.N., Gertler, A., and Mak, R.H. (2014). A pegylated leptin antagonist ameliorates CKD-associated cachexia in mice. J. Am. Soc. Nephrol. 25, 119–128.CrossrefGoogle Scholar

  • Cheunsuang, O. and Morris, R. (2005). Astrocytes in the arcuate nucleus and median eminence that take up a fluorescent dye from the circulation express leptin receptors and neuropeptide Y Y1 receptors. Glia 52, 228–233.CrossrefGoogle Scholar

  • Choi, J.-H., Choi, K.-C., Auersperg, N., and Leung, P.C. (2004). Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. J. Clin. Endocrinol. Metab. 89, 5508–5516.Google Scholar

  • Cirillo, D., Rachiglio, A.M., la Montagna, R., Giordano, A., and Normanno, N. (2008). Leptin signaling in breast cancer: an overview. J. Cell. Biochem. 105, 956–964.Google Scholar

  • Claycombe, K., King, L.E., and Fraker, P.J. (2008). A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl. Acad. Sci. USA 105, 2017–2021.Google Scholar

  • Coleman, D.L. (1973). Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9, 294–298.CrossrefGoogle Scholar

  • Coleman, D.L. (2010). A historical perspective on leptin. Nat. Med. 16, 1097–1099.CrossrefGoogle Scholar

  • Considine, R.V., Sinha, M.K., Heiman, M.L., Kriauciunas, A., Stephens, T.W., Nyce, M.R., Ohannesian, J.P., Marco, C.C., McKee, L.J., Bauer, T.L., et al. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295.Google Scholar

  • Couturier, C. and Jockers, R. (2003). Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J. Biol. Chem. 278, 26604–26611.Google Scholar

  • Cui, H., Cai, F., and Belsham, D.D. (2006). Leptin signaling in neurotensin neurons involves STAT, MAP kinases ERK1/ 2, and p38 through c-Fos and ATF1. FASEB J. 20, 2654–2656.Google Scholar

  • De Rosa, V., Procaccini, C., La Cava, A., Chieffi, P., Nicoletti, G.F., Fontana, S., Zappacosta, S., and Matarese, G. (2006). Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J. Clin. Invest. 116, 447–455.Google Scholar

  • De Rosa, V., Procaccini, C., Calì, G., Pirozzi, G., Fontana, S., Zappacosta, S., La Cava, A., Matarese, G., and Cali, G. (2007). A key role of leptin in the control of regulatory T cell proliferation. Immunity 26, 241–255.CrossrefGoogle Scholar

  • Duan, C., Li, M., and Rui, L. (2004). SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin. J. Biol. Chem. 279, 43684–43691.Google Scholar

  • Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A.F., Beil, F.T., Shen, J., Vinson, C., Rueger, J.M., and Karsenty, G. (2000). Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207.Google Scholar

  • Elias, C.F., Aschkenasi, C., Lee, C., Kelly, J., Ahima, R.S., Bjorbaek, C., Flier, J.S., Saper, C.B., and Elmquist, J.K. (1999). Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786.CrossrefGoogle Scholar

  • Elinav, E., Ali, M., Bruck, R., Brazowski, E., Phillips, A., Shapira, Y., Katz, M., Solomon, G., Halpern, Z., and Gertler, A. (2009a). Competitive inhibition of leptin signaling results in amelioration of liver fibrosis through modulation of stellate cell function. Hepatology 49, 278–286.Google Scholar

  • Elinav, E., Niv-Spector, L., Katz, M., Price, T.O., Ali, M., Yacobovitz, M., Solomon, G., Reicher, S., Lynch, J.L., Halpern, Z., et al. (2009b). Pegylated leptin antagonist is a potent orexigenic agent: preparation and mechanism of activity. Endocrinology 150, 3083–3091.Google Scholar

  • Faggioni, R., Jones-Carson, J., Reed, D.A., Dinarello, C.A., Feingold, K.R., Grunfeld, C., and Fantuzzi, G. (2000). Leptin-deficient (ob/ob). Mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor alpha and IL-18. Proc. Natl. Acad. Sci. USA 97, 2367–2372.Google Scholar

  • Faouzi, M., Leshan, R., Bjornholm, M., Hennessey, T., Jones, J., and Munzberg, H. (2007). Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology 148, 5414–5423.Google Scholar

  • Farooqi, I.S., Matarese, G., Lord, G.M., Keogh, J.M., Lawrence, E., Agwu, C., Sanna, V., Jebb, S.A., Perna, F., Fontana, S., et al. (2002). Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103.Google Scholar

  • Fei, H., Okano, H.J., Li, C., Lee, G.H., Zhao, C., Darnell, R., and Friedman, J.M. (1997). Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl. Acad. Sci. USA 94, 7001–7005.CrossrefGoogle Scholar

  • Ferla, R., Bonomi, M., Otvos, L., and Surmacz, E. (2011). Glioblastoma-derived leptin induces tube formation and growth of endothelial cells: comparison with VEGF effects. BMC Cancer 11, 303.CrossrefGoogle Scholar

  • Fong, T.M., Huang, R.R., Tota, M.R., Mao, C., Smith, T., Varnerin, J., Karpitskiy V.V., Krause, J.E., and Van der Ploeg, L.H. (1998). Localization of leptin binding domain in the leptin receptor. Mol. Pharmacol. 53, 234–240.Google Scholar

  • Frankenberry, K.A., Skinner, H., Somasundar, P., McFadden, D.W., and Vona-Davis, L.C. (2006). Leptin receptor expression and cell signaling in breast cancer. Int. J. Oncol. 28, 985–993.Google Scholar

  • Frederich, R.C., Lollmann, B., Hamann, A., Napolitano-Rosen, A., Kahn, B.B., Lowell, B.B., and Flier, J.S. (1995). Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J. Clin. Invest. 96, 1658–1663.CrossrefGoogle Scholar

  • Friedman, J.M. and Halaas, J.L. (1998). Leptin and the regulation of body weight in mammals. Nature 395, 763–770.Google Scholar

  • Gainsford, T., Willson, T.A., Metcalf, D., Handman, E., McFarlane, C., Ng, A., Nicola, N.A., Alexander, W.S., and Hilton, D.J. (1996). Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc. Natl. Acad. Sci. USA 93, 14564–14568.CrossrefGoogle Scholar

  • Garofalo, C. and Surmacz, E. (2006). Leptin and cancer. J. Cell. Physiol. 207, 12–22.Google Scholar

  • Ge, H., Huang, L., Pourbahrami, T., and Li, C. (2002). Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J. Biol. Chem. 277, 45898–45903.Google Scholar

  • Ghilardi, N., Ziegler, S., Wiestner, A., Stoffel, R., Heim, M.H., and Skoda, R.C. (1996). Defective STAT signaling by the leptin receptor in diabetic mice. Proc. Natl. Acad. Sci. USA 93, 6231–6235.CrossrefGoogle Scholar

  • Gogas, H., Trakatelli, M., Dessypris, N., Terzidis, A., Katsambas, A., Chrousos, G.P., and Petridou, E.T. (2008). Melanoma risk in association with serum leptin levels and lifestyle parameters: a case-control study. Ann. Oncol. 19, 384–389.CrossrefGoogle Scholar

  • Gonzalez, R.R. and Leavis, P.C. (2003). A peptide derived from the human leptin molecule is a potent inhibitor of the leptin receptor function in rabbit endometrial cells. Endocrine 21, 185–195.CrossrefGoogle Scholar

  • Gonzalez, R.R., Cherfils, S., Escobar, M., Yoo, J.H., Carino, C., Styer, A.K., Sullivan, B.T., Sakamoto, H., Olawaiye, A., Serikawa, T., et al. (2006). Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J. Biol. Chem. 281, 26320–26328.Google Scholar

  • Gonzalez, R.R., Watters, A., Xu, Y., Singh, U.P., Mann, D.R., Rueda, B.R., and Penichet, M.L. (2009). Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. 11, R36.Google Scholar

  • Gruen, M.L., Hao, M., Piston, D.W., and Hasty, A.H. (2007). Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. Am. J. Physiol. Cell Physiol. 293, C1481–C1488.Google Scholar

  • Guo, S. and Gonzalez-Perez, R.R. (2011). Notch, IL-1 and leptin crosstalk outcome (NILCO). Is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2 expression in breast cancer. PLoS One 6, e21467.Google Scholar

  • Haglund, E., Sułkowska, J.I., He, Z., Feng, G-.S., Jennings, P., and Onuchic, J.N. (2012). The unique cysteine knot regulates the pleotropic hormone leptin. PLoS One 7, e45654.Google Scholar

  • Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Burley, S.K., and Friedman, J.M. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546.Google Scholar

  • Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., Bendahman, N., and Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature 363, 446–448.Google Scholar

  • Haslam, D.W. and James, W.P.T. (2005). Obesity. Lancet 366, 1197–1209.Google Scholar

  • Hileman, S.M., Tornoe, J., Flier, J.S., and Bjorbaek, C. (2000). Transcellular transport of leptin by the short leptin receptor isoform ObRa in Madin-Darby Canine kidney cells. Endocrinology 141, 1955–1961.Google Scholar

  • El Homsi, M., Ducroc, R., Claustre, J., Jourdan, G., Gertler, A., Estienne, M., Bado, A., Scoazec, J.-Y., and Plaisancié, P. (2007). Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting, PKC, PI3K, and MAPK pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G365–G373.Google Scholar

  • Howard, J.K., Lord, G.M., Matarese, G., Vendetti, S., Ghatei, M.A., Ritter, M.A., Lechler, R.I., and Bloom, S.R. (1999). Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Invest. 104, 1051–1059.Google Scholar

  • Hu, X., Juneja, S.C., Maihle, N.J., and Cleary, M.P. (2002). Leptin–a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl. Cancer Inst. 94, 1704–11.CrossrefGoogle Scholar

  • Iserentant, H., Peelman, F., Defeau, D., Vandekerckhove, J., Zabeau, L., and Tavernier, J. (2005). Mapping of the interface between leptin and the leptin receptor CRH2 domain. J. Cell Sci. 118, 2519–2527.Google Scholar

  • Iversen, P.O., Drevon, C.A., and Reseland, J.E. (2002). Prevention of leptin binding to its receptor suppresses rat leukemic cell growth by inhibiting angiogenesis. Blood 100, 4123–4128.Google Scholar

  • Jiang, L., Li, Z., and Rui, L. (2008). Leptin stimulates both JAK2-dependent and JAK2-independent signaling pathways. J. Biol. Chem. 283, 28066–28073.Google Scholar

  • Kastin, A.J., Pan, W., Maness, L.M., Koletsky, R.J., and Ernsberger, P. (1999). Decreased transport of leptin across the blood-brain barrier in rats lacking the short form of the leptin receptor. Peptides 20, 1449–1453.CrossrefGoogle Scholar

  • Kellerer, M., Koch, M., Metzinger, E., Mushack, J., Capp, E., and Häring, H.U. (1997). Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 40, 1358–1362.CrossrefGoogle Scholar

  • Kloek, C., Haq, A.K., Dunn, S.L., Lavery, H.J., Banks, A.S., and Myers, M.G. (2002). Regulation of Jak kinases by intracellular leptin receptor sequences. J. Biol. Chem. 277, 41547–41555.Google Scholar

  • Konstantinides, S., Schäfer, K., Koschnick, S., and Loskutoff, D.J. (2001). Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J. Clin. Invest. 108, 1533–1540.Google Scholar

  • Kovalszky, I., Surmacz, E., Scolaro, L., Cassone, M., Ferla, R., Sztodola, A., Olah, J., Hatfield, M.P.D., Lovas, S., and Otvos, L. (2010). Leptin-based glycopeptide induces weight loss and simultaneously restores fertility in animal models. Diabetes Obes. Metab. 12, 393–402.CrossrefGoogle Scholar

  • La Cava, A. and Matarese, G. (2004). The weight of leptin in immunity. Nat. Rev. Immunol 4, 371–379.CrossrefGoogle Scholar

  • Leist, M., Ghezzi, P., Grasso, G., Bianchi, R., Villa, P., Fratelli, M., Savino, C., Bianchi, M., Nielsen, J., Gerwien, J., et al. (2004). Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305, 239–242.Google Scholar

  • Li, C. and Friedman, J.M. (1999). Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc. Natl. Acad. Sci. USA 96, 9677–9682.CrossrefGoogle Scholar

  • Liao, L.M., Schwartz, K., Pollak, M., Graubard, B.I., Li, Z., Ruterbusch, J., Rothman, N., Davis, F., Wacholder, S., Colt, J., et al. (2013). Serum leptin and adiponectin levels and risk of renal cell carcinoma. Obesity (Silver Spring). 21, 1478–1485.CrossrefGoogle Scholar

  • Lord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R., and Lechler, R.I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901.Google Scholar

  • Lord, G.M., Matarese, G., Howard, J.K., Bloom, S.R., and Lechler, R.I. (2002). Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines. J. Leukoc. Biol. 72, 330–338.Google Scholar

  • Macia, L., Delacre, M., Abboud, G., Ouk, T.-S., Delanoye, A., Verwaerde, C., Saule, P., and Wolowczuk, I. (2006). Impairment of dendritic cell functionality and steady-state number in obese mice. J. Immunol. 177, 5997–6006.Google Scholar

  • Madej, T., Boguski, M.S., and Bryant, S.H. (1995). Threading analysis suggests that the obese gene product may be a helical cytokine. FEBS Lett. 373, 13–8.Google Scholar

  • Mancour, L., Daghestani, H., and Dutta, S. (2012). Ligand-induced architecture of the leptin receptor signaling complex. Mol. Cell 48, 1–7.CrossrefGoogle Scholar

  • Mancuso, P., Canetti, C., Gottschalk, A., Tithof, P.K., and Peters-Golden, M. (2004). Leptin augments alveolar macrophage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2 (cPLA2gamma) protein expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L497–502.Google Scholar

  • Mandel, M. and Mahmoud, A. (1978). Impairment of cell-mediated immunity in mutation diabetic mice (db/db). J. Immunol. 120, 1375–77.Google Scholar

  • Mansour, E., Pereira, F.G., Araujo, E.P., Amaral, M.E.C., Morari, J., Ferraroni, N.R., Ferreira, D.S., Lorand-Metze, I., Velloso, L.A., and Araújo, E.P. (2006). Leptin inhibits apoptosis in thymus through a janus kinase-2-independent, insulin receptor substrate-1/phosphatidylinositol-3 kinase-dependent pathway. Endocrinology 147, 5470–5479.Google Scholar

  • Mark, A.L., Shaffer, R.A., Correia, M.L., Morgan, D.A., Sigmund, C.D., and Haynes, W.G. (1999). Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. J. Hypertens. 17, 1949–1953.CrossrefGoogle Scholar

  • Matarese, G., Di Giacomo, A., Sanna, V., Lord, G.M., Howard, J.K., Di Tuoro, A., Bloom, S.R., Lechler, R.I., Zappacosta, S., and Fontana, S. (2001). Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol. 166, 5909–5916.Google Scholar

  • Matarese, G., La Cava, A., Sanna, V., Lord, G.M., Lechler, R.I., Fontana, S., and Zappacosta, S. (2002). Balancing susceptibility to infection and autoimmunity: a role for leptin? Trends Immunol. 23, 182–187.CrossrefGoogle Scholar

  • Matarese, G., Carrieri, P.B., La Cava, A., Perna, F., Sanna, V., De Rosa, V., Aufiero, D., Fontana, S., and Zappacosta, S. (2005). Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA 102, 5150–5155.Google Scholar

  • Mattioli, B., Straface, E., Quaranta, M.G., Giordani, L., and Viora, M. (2005). Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol. 174, 6820–6828.Google Scholar

  • Mattioli, B., Straface, E., Matarrese, P., Quaranta, M.G., Giordani, L., Malorni, W., and Viora, M. (2008). Leptin as an immunological adjuvant: enhanced migratory and CD8+ T cell stimulatory capacity of human dendritic cells exposed to leptin. FASEB J. 22, 2012–2022.CrossrefGoogle Scholar

  • Mauro, L., Catalano, S., Bossi, G., Pellegrino, M., Barone, I., Morales, S., Giordano, C., Bartella, V., Casaburi, I., and Andò, S. (2007). Evidences that leptin up-regulates E-cadherin expression in breast cancer: effects on tumor growth and progression. Cancer Res. 67, 3412–3421.Google Scholar

  • McMurtry, V., Simeone, A.-M., Nieves-Alicea, R., and Tari, A.M. (2009). Leptin utilizes Jun N-terminal kinases to stimulate the invasion of MCF-7 breast cancer cells. Clin. Exp. Metastasis 26, 197–204.CrossrefGoogle Scholar

  • Mela, V., Díaz, F., Gertler, A., Solomon, G., Argente, J., Viveros, M.-P., and Chowen, J.A. (2012). Neonatal treatment with a pegylated leptin antagonist has a sexually dimorphic effect on hypothalamic trophic factors and neuropeptide levels. J. Neuroendocrinol. 24, 756–765.CrossrefGoogle Scholar

  • Mercer, J.G., Hoggard, N., Williams, L.M., Lawrence, C.B., Hannah, L.T., and Trayhurn, P. (1996). Localization of leptin receptor mR, N.A., and the long form splice variant (Ob-Rb). In mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 387, 113–116.Google Scholar

  • Minokoshi, Y., Kim, Y.B., Peroni, O.D., Fryer, L.G., Muller, C., Carling, D., and Kahn, B.B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343.Google Scholar

  • Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.-B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferré, P., Birnbaum, M.J., et al. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574.Google Scholar

  • Miyamoto, L., Ebihara, K., Kusakabe, T., Aotani, D., Yamamoto-Kataoka, S., Sakai, T., Aizawa-Abe, M., Yamamoto, Y., Fujikura, J., Hayashi, T., et al. (2012). Leptin activates hepatic 5′-AMP-activated protein kinase through sympathetic nervous system and α1-adrenergic receptor: a potential mechanism for improvement of fatty liver in lipodystrophy by leptin. J. Biol. Chem. 287, 40441–40447.Google Scholar

  • Munzberg, H., Flier, J.S., and Bjorbaek, C. (2004). Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145, 4880–4889.Google Scholar

  • Nair, P. (2005). Epidermal growth factor receptor family and its role in cancer progression. Curr. Sci. 88, 890–898.Google Scholar

  • Niv-Spector, L., Gonen-Berger, D., Gourdou, I., Biener, E., Gussakovsky, E.E., Benomar, Y., Ramanujan K, V., Taouis, M., Herman, B., Callebaut, I., et al. (2005a). Identification of the hydrophobic strand in the A-B loop of leptin as major binding site III: implications for large-scale preparation of potent recombinant human and ovine leptin antagonists. Biochem. J. 391, 221–230.Google Scholar

  • Niv-Spector, L., Raver, N., Friedman-Einat, M., Grosclaude, J., Gussakovsky, E.E., Livnah, O., and Gertler, A. (2005b). Mapping leptin-interacting sites in recombinant leptin-binding domain (LBD). Subcloned from chicken leptin receptor. Biochem. J. 390, 475–484.Google Scholar

  • Niv-Spector, L., Shpilman, M., Boisclair, Y., and Gertler, A. (2012). Large-scale preparation and characterization of non-pegylated and pegylated superactive ovine leptin antagonist. Protein Expr. Purif. 81, 186–192.Google Scholar

  • Okumura, M., Yamamoto, M., Sakuma, H., Kojima, T., Maruyama, T., Jamali, M., Cooper, D.R., and Yasuda, K. (2002). Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochim. Biophys. Acta 1592, 107–116.Google Scholar

  • Otvos, L., Terrasi, M., Cascio, S., Cassone, M., Abbadessa, G., De Pascali, F., Scolaro, L., Knappe, D., Stawikowski, M., Cudic, P., et al. (2008). Development of a pharmacologically improved peptide agonist of the leptin receptor. Biochim. Biophys. Acta 1783, 1745–1754.Google Scholar

  • Otvos, L., Kovalszky, I., Riolfi, M., Ferla, R., Olah, J., Sztodola, A., Nama, K., Molino, A., Piubello, Q., Wade, J.D., et al. (2011a). Efficacy of a leptin receptor antagonist peptide in a mouse model of triple-negative breast cancer. Eur. J. Cancer 47, 1578–1584.Google Scholar

  • Otvos, L., Kovalszky, I., Scolaro, L., Sztodola, A., Olah, J., Cassone, M., Knappe, D., Hoffmann, R., Lovas, S., Hatfield, M., et al. (2011b). Peptide-based leptin receptor antagonists for cancer treatment and appetite regulation. Biopolymers 96, 117–125.Google Scholar

  • Otvos, L., Shao, W.-H., Vanniasinghe, A.S., Amon, M.A., Holub, M.C., Kovalszky, I., Wade, J.D., Doll, M., Cohen, P.L., Manolios, N., et al. (2011c). Toward understanding the role of leptin and leptin receptor antagonism in preclinical models of rheumatoid arthritis. Peptides 32, 1567–1574.Google Scholar

  • Ozata, M., Ozdemir, I.C., and Licinio, J. (1999). Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 84, 3686–3695.Google Scholar

  • Pais, R., Silaghi, H., Silaghi, A.-C., Rusu, M.-L., and Dumitrascu, D.-L. (2009). Metabolic syndrome and risk of subsequent colorectal cancer. World J. Gastroenterol. 15, 5141–5148.Google Scholar

  • Peelman, F., Van Beneden, K., Zabeau, L., Iserentant, H., Ulrichts, P., Defeau, D., Verhee, A., Catteeuw, D., Elewaut, D., and Tavernier, J. (2004). Mapping of the leptin binding sites and design of a leptin antagonist. J. Biol. Chem. 279, 41038–41046.Google Scholar

  • Peelman, F., Iserentant, H., De Smet, A.S., Vandekerckhove, J., Zabeau, L., and Tavernier, J. (2006). Mapping of binding site III in the leptin receptor and modeling of a hexameric leptin leptin receptor complex. J. Biol. Chem. 281, 15496–15504.Google Scholar

  • Perera, C.N., Chin, H.G., Duru, N., and Camarillo, I.G. (2008). Leptin-regulated gene expression in MCF-7 breast cancer cells: mechanistic insights into leptin-regulated mammary tumor growth and progression. J. Endocrinol. 199, 221–233.Google Scholar

  • Purdham, D.M., Rajapurohitam, V., Zeidan, A., Huang, C., Gross, G.J., and Karmazyn, M. (2008). A neutralizing leptin receptor antibody mitigates hypertrophy and hemodynamic dysfunction in the postinfarcted rat heart. Am. J. Physiol. Heart Circ. Physiol. 295, H441–H446.Google Scholar

  • Rahmouni, K., Sigmund, C.D., Haynes, W.G., and Mark, A.L. (2009). Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58, 536–542.Google Scholar

  • Rajapurohitam, V., Javadov, S., Purdham, D.M., Kirshenbaum, L.A., and Karmazyn, M. (2006). An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin I.I. and endothelin-1. J. Mol. Cell. Cardiol. 41, 265–274.Google Scholar

  • Ratke, J., Entschladen, F., Niggemann, B., Zänker, K.S., and Lang, K. (2010). Leptin stimulates the migration of colon carcinoma cells by multiple signaling pathways. Endocr. Relat. Cancer 17, 179–189.CrossrefGoogle Scholar

  • Raver, N., Vardy, E., Livnah, O., Devos, R., and Gertler, A. (2002). Comparison of R128Q mutations in human, ovine, and chicken leptins. Gen. Comp. Endocrinol. 126, 52–58.Google Scholar

  • Ray, A. and Cleary, M.P. (2010). Leptin as a potential therapeutic target for breast cancer prevention and treatment. Expert Opin. Ther. Targets 14, 443–451.CrossrefGoogle Scholar

  • Rock, F.L., Altmann, S.W., van Heek, M., Kastelein, R.A., and Bazan, J.F. (1996). The leptin haemopoietic cytokine fold is stabilized by an intrachain disulfide bond. Horm. Metab. Res. 28, 649–652.Google Scholar

  • Rosenblum, C.I., Tota, M., Cully, D., Smith, T., Collum, R., Qureshi, S., Hess, J.F., Phillips, M.S., Hey, P.J., Vongs, A., et al. (1996). Functional STAT 1 and 3 signaling by the leptin receptor (OB-R); reduced expression of the rat fatty leptin receptor in transfected cells. Endocrinology 137, 5178–5181.Google Scholar

  • Rowlinson, S.W., Yoshizato, H., Barclay, J.L., Brooks, A.J., Behncken, S.N., Kerr, L.M., Millard, K., Palethorpe, K., Nielsen, K., Clyde-Smith, J., et al. (2008). An agonist-induced conformational change in the growth hormone receptor determines the choice of signalling pathway. Nat. Cell Biol. 10, 740–747.Google Scholar

  • Samuel-Mendelsohn, S., Inbar, M., Weiss-Messer, E., Niv-Spector, L., Gertler, A., and Barkey, R.J. (2011). Leptin signaling and apoptotic effects in human prostate cancer cell lines. Prostate 71, 929–945.Google Scholar

  • Sanna, V., Di Giacomo, A., La Cava, A., Lechler, R.I., Fontana, S., Zappacosta, S., and Matarese, G. (2003). Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J. Clin. Invest. 111, 241–250.Google Scholar

  • Saxena, N.K., Vertino, P.M., Anania, F.A., and Sharma, D. (2007). Leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J. Biol. Chem. 282, 13316–13325.Google Scholar

  • Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P., and Baskin, D.G. (1996). Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106.Google Scholar

  • Scolaro, L., Parrino, C., Coroniti, R., Otvos, L., and Surmacz, E. (2013). Exploring leptin antagonism in ophthalmic cell models. PLoS One 8, e76437.Google Scholar

  • Señarís, R., Garcia-Caballero, T., Casabiell, X., Gallego, R., Castro, R., Considine R.V., Dieguez, C., and Casanueva, F.F. (1997). Synthesis of leptin in human placenta. Endocrinology 138, 4501–4504.Google Scholar

  • Shapiro, N.I., Khankin E, V., Van Meurs, M., Shih, S.-C., Lu, S., Yano, M., Castro, P.R., Maratos-Flier, E., Parikh, S.M., Karumanchi, S.A., et al. (2010). Leptin exacerbates sepsis-mediated morbidity and mortality. J. Immunol. 185, 517–524.Google Scholar

  • Shpilman, M., Niv-Spector, L., Katz, M., Varol, C., Solomon, G., Ayalon-Soffer, M., Boder, E., Halpern, Z., Elinav, E., and Gertler, A. (2011). Development and characterization of high affinity leptins and leptin antagonists. J. Biol. Chem. 286, 4429–4442.Google Scholar

  • Siegmund, B., Lear-Kaul, K.C., Faggioni, R., and Fantuzzi, G. (2002). Leptin deficiency, not obesity, protects mice from Con A-induced hepatitis. Eur J. Immunol. 32, 552–560.Google Scholar

  • Sierra-Honigmann, M.R., Nath, A.K., Murakami, C., García-Cardeña, G., Papapetropoulos, A., Sessa, W.C., Madge, L.A., Schechner, J.S., Schwabb, M.B., and Polverini, P.J. (1998). Biological action of leptin as an angiogenic factor. Science 281, 1683–1686.Google Scholar

  • Simon, M., Stefan, N., Plückthun, A., and Zangemeister-Wittke, U. (2013). Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opin. Drug Deliv. 10, 451–468.Google Scholar

  • Singh, U.P., Singh, N.P., Guan, H., Busbee, B., Price, R.L., Taub, D.D., Mishra, M.K., Fayad, R., Nagarkatti, M., and Nagarkatti, P.S. (2013). Leptin antagonist ameliorates chronic colitis in IL-10-/- mice. Immunobiology 218, 1439–1451.Google Scholar

  • Smiechowska, J., Utech, A., Taffet, G., Hayes, T., Marcelli, M., and Garcia, J.M. (2010). Adipokines in patients with cancer anorexia and cachexia. J. Investig. Med. 58, 554–559.Google Scholar

  • Soma, D., Kitayama, J., Yamashita, H., Miyato, H., Ishikawa, M., and Nagawa, H. (2008). Leptin augments proliferation of breast cancer cells via transactivation of HER2. J. Surg. Res. 149, 9–14.Google Scholar

  • Tanaka, M., Suganami, T., Kim-Saijo, M., Toda, C., Tsuiji, M., Ochi, K., Kamei, Y., Minokoshi, Y., and Ogawa, Y. (2011). Role of central leptin signaling in the starvation-induced alteration of B-cell development. J. Neurosci. 31, 8373–8380.Google Scholar

  • Tartaglia, L.A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G.J., Campfield, L.A., Clark, F.T., Deeds, J., et al. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271.Google Scholar

  • Tarzi, R.M., Cook, H.T., Jackson, I., Pusey, C.D., and Lord, G.M. (2004). Leptin-deficient mice are protected from accelerated nephrotoxic nephritis. Am. J. Pathol. 164, 385–390.Google Scholar

  • Tian, Z., Sun, R., Wei, H., and Gao, B. (2002). Impaired natural killer (NK). Cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem. Biophys. Res. Commun. 298, 297–302.Google Scholar

  • Tisdale, M.J. (2002). Cachexia in cancer patients. Nat. Rev. Cancer 2, 862–871.CrossrefGoogle Scholar

  • Uotani, S., Abe, T., and Yamaguchi, Y. (2006). Leptin activates AMP-activated protein kinase in hepatic cells via a JAK2-dependent pathway. Biochem. Biophys. Res. Commun. 351, 171–175.Google Scholar

  • Vaisse, C., Halaas, J.L., Horvath, C.M., Darnell, J.E., Stoffel, M., and Friedman, J.M. (1996). Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat. Genet. 14, 95–97.CrossrefGoogle Scholar

  • Van der Linden, R., de Geus, B., Stok, W., Bos, W., van Wassenaar, D., Verrips, T., and Frenken, L. (2000). Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J. Immunol. Methods 240, 185–195.Google Scholar

  • Venken, K, Seeuws, S., Zabeau, L., Jacques, P., Decruy, T., Coudenys, J., Verheugen, E., Windels, F., Catteeuw, D., Drennan, M., et al. (2014). A bidirectional crosstalk between iNKT cells and adipocytes mediated by leptin modulates susceptibility for T cell mediated hepatitis. J. Hepatol. 60, 175–182.Google Scholar

  • Verploegen, S.A., Plaetinck, G., Devos, R., Van der Heyden, J., and Guisez, Y. (1997). A human leptin mutant induces weight gain in normal mice. FEBS Lett. 405, 237–240.Google Scholar

  • Wang, J., Liu, R., Hawkins, M., Barzilai, N., and Rossetti, L. (1998). A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684–688.Google Scholar

  • Wauman, J. and Tavernier, J. (2011). Leptin receptor signaling: pathways to leptin resistance. Front. Biosci. 16, 2771–2793.CrossrefGoogle Scholar

  • Wauman, J., De Smet, A.S., Catteeuw, D., Belsham, D., and Tavernier, J. (2008). Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol. Endocrinol. 22, 965–977.Google Scholar

  • Withers, D.J., Gutierrez, J.S., Towery, H., Burks, D.J., Ren, J.M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G.I., et al. (1998). Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904.Google Scholar

  • Xu, X., Su, S., Barnes, V.A., De Miguel, C., Pollock, J., Ownby, D., Shi, H., Zhu, H., Snieder, H., and Wang, X. (2013a). A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics 8, 522–533.CrossrefGoogle Scholar

  • Xu, X., Zeng, H., Xiao, D., Zhou, H., and Liu, Z. (2013b). Genome wide association study of obesity. Zhong Nan Da Xue Xue Bao. Yi Xue Ban 38, 95–100.Google Scholar

  • Yin, N., Wang, D., Zhang, H., Yi, X., Sun, X., Shi, B., Wu, H., Wu, G., Wang, X., and Shang, Y. (2004). Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res. 64, 5870–5875.Google Scholar

  • Yu, Y., Liu, Y., Shi, F.-D., Zou, H., Matarese, G., and La Cava, A. (2013). Cutting edge: leptin-induced RORγt expression in CD4+ T cells promotes Th17 responses in systemic lupus erythematosus. J. Immunol. 190, 3054–3058.Google Scholar

  • Zabeau, L., Defeau, D., Van der Heyden, J., Iserentant, H., Vandekerckhove, J., and Tavernier, J. (2004). Functional analysis of leptin receptor activation using a Janus kinase/signal transducer and activator of transcription complementation assay. Mol. Endocrinol. 18, 150–161.CrossrefGoogle Scholar

  • Zabeau, L., Defeau, D., Iserentant, H., Vandekerckhove, J., Peelman, F., and Tavernier, J. (2005). Leptin receptor activation depends on critical cysteine residues in its fibronectin type III subdomains. J. Biol. Chem. 280, 22632–22640.Google Scholar

  • Zabeau, L., Verhee, A., Catteeuw, D., Faes, L., Seeuws, S., Decruy, T., Elewaut, D., Peelman, F., and Tavernier, J. (2012). Selection of non-competitive leptin antagonists using a random nanobody-based approach. Biochem. J. 441, 425–434.Google Scholar

  • Zarkesh-Esfahani, H., Pockley, G., Metcalfe, R.A., Bidlingmaier, M., Wu, Z., Ajami, A., Weetman, A.P., Strasburger, C.J., and Ross, R.J. (2001). High-dose leptin activates human leukocytes via receptor expression on monocytes. J. Immunol. 167, 4593–4599.Google Scholar

  • Zarkesh-Esfahani, H., Pockley, A.G., Wu, Z., Hellewell, P.G., Weetman, A.P., and Ross, R.J.M. (2004). Leptin indirectly activates human neutrophils via induction of TNF-α. J. Immunol. 172, 1809–1814.Google Scholar

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.Google Scholar

  • Zhang, F., Basinski, M.B., Beals, J.M., Briggs, S.L., Churgay, L.M., Clawson, D.K., DiMarchi, R.D., Furman, T.C., Hale, J.E., Hsiung, H.M., et al. (1997). Crystal structure of the obese protein leptin-E100. Nature 387, 206–209.Google Scholar

  • Zhang, E.E., Chapeau, E., Hagihara, K., and Feng, G.-S. (2004). Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc. Natl. Acad. Sci. USA 101, 16064–16069.CrossrefGoogle Scholar

  • Zhao, A.Z., Huan, J.-N., Gupta, S., Pal, R., and Sahu, A. (2002). A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat. Neurosci. 5, 727–728.Google Scholar

  • Zhao, Y., Sun, R., You, L., Gao, C., and Tian, Z. (2003). Expression of leptin receptors and response to leptin stimulation of human natural killer cell lines. Biochem. Biophys. Res. Commun. 300, 247–252.Google Scholar

About the article

Lennart Zabeau

After finishing his biotechnology studies at Ghent University in 1998, Lennart Zabeau joined the CRL to study the mechanisms underlying cytokine receptor clustering and activation. He started to work on the interleukin-5 receptor, but later on the leptin receptor became his main research interest. He obtained a PhD in 2004. With an FWO fellowship he is currently involved in the design and evaluation of leptin and leptin receptor antagonists in vitro and in mouse models for certain autoimmune diseases.

Frank Peelman

After graduating as a biologist in 1993, Frank Peelman obtained his PhD in 1999 on the structure-function relationships of lecithin:cholesterol acyltransferase at the Biochemistry department of Ghent University. In 2002, he joined the Cytokine Receptor Lab to investigate the properties of leptin binding to its receptor. In 2006 he became a full professor at Ghent University, and his current research focuses on the molecular dissection of protein-protein interactions, with focus on cytokines and Toll-like receptor signaling.

Jan Tavernier

Jan Tavernier founded the Cytokine Receptor Laboratory (CRL) in 1996. He obtained his PhD in 1984 in the early days of recombinant DNA on the cloning of several interferon and interleukin genes. In the same year he moved to industry, first Biogen, later Roche, where he continued cytokine research and demonstrated for the first time the shared use of cytokine receptor subunits. He became full professor at Ghent University in 1996 and currently heads the CRL as part of the VIB Department of Medical Protein Research.


Corresponding author: Jan Tavernier, Flanders Institute for Biotechnology (VIB), Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium, e-mail:


Received: 2013-11-21

Accepted: 2014-02-05

Published Online: 2014-02-11

Published in Print: 2014-05-01


Citation Information: Biological Chemistry, Volume 395, Issue 5, Pages 499–514, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0283.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Virginia Mela, Oskarina Hernandez, Caroline Hunsche, Francisca Diaz, Julie A. Chowen, and Mónica De la Fuente
Molecular and Cellular Endocrinology, 2017, Volume 454, Page 125
[2]
Joris Wauman, Lennart Zabeau, and Jan Tavernier
Frontiers in Endocrinology, 2017, Volume 8
[3]
Lennart Zabeau, Cathy J. Jensen, Sylvie Seeuws, Koen Venken, Annick Verhee, Dominiek Catteeuw, Geert van Loo, Hui Chen, Ken Walder, Jacob Hollis, Simon Foote, Margaret J. Morris, José Van der Heyden, Frank Peelman, Brian J. Oldfield, Justin P. Rubio, Dirk Elewaut, and Jan Tavernier
Cellular and Molecular Life Sciences, 2015, Volume 72, Number 3, Page 629

Comments (0)

Please log in or register to comment.
Log in