Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 395, Issue 5

Issues

The diverse roles of the Nup93/Nic96 complex proteins – structural scaffolds of the nuclear pore complex with additional cellular functions

Benjamin Vollmer
  • Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, D-72076 Tübingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfram Antonin
  • Corresponding author
  • Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, D-72076 Tübingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-25 | DOI: https://doi.org/10.1515/hsz-2013-0285

Abstract

Nuclear pore complexes mediate the transport between the cell nucleoplasm and cytoplasm. These 125 MDa structures are among the largest assemblies found in eukaryotes, built from proteins organized in distinct subcomplexes that act as building blocks during nuclear pore complex biogenesis. In this review, we focus on one of these subcomplexes, the Nup93 complex in metazoa and its yeast counterpart, the Nic96 complex. We discuss its essential function in nuclear pore complex assembly as a linker between the nuclear membrane and the central part of the pore and its various roles in nuclear transport processes and beyond.

Keywords: chromatin segregation; Nic96 complex; nuclear pore complex; nuclear transport; Nup93 complex; spindle assembly checkpoint

References

  • Adams, R.L. and Wente, S.R. (2013). Uncovering nuclear pore complexity with innovation. Cell 152, 1218–1221.Google Scholar

  • Ahmed, S., Brickner, D.G., Light, W.H., Cajigas, I., McDonough, M., Froyshteter, A.B., Volpe, T., and Brickner, J.H. (2010). DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat. Cell. Biol. 12, 111–118.CrossrefGoogle Scholar

  • Aitchison, J.D., Rout, M.P., Marelli, M., Blobel, G., and Wozniak, R.W. (1995). Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J. Cell Biol. 131, 1133–1148.Google Scholar

  • Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., et al. (2007a). Determining the architectures of macromolecular assemblies. Nature 450, 683–694.Google Scholar

  • Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., et al. (2007b). The molecular architecture of the nuclear pore complex. Nature 450, 695–701.Google Scholar

  • Allende, M.L., Amsterdam, A., Becker, T., Kawakami, K., Gaiano, N., and Hopkins, N. (1996). Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development. Genes Dev. 10, 3141–3155.CrossrefGoogle Scholar

  • Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P., and Hurt, E. (2011). Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277–289.Google Scholar

  • Andersen, K.R., Onischenko, E., Tang, J.H., Kumar, P., Chen, J.Z., Ulrich, A., Liphardt, J.T., Weis, K., and Schwartz, T.U. (2013). Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors. eLife 2, e00745.CrossrefGoogle Scholar

  • Antonin, W. (2009). Nuclear envelope: membrane bending for pore formation? Curr. Biol. 19, R410–412.CrossrefGoogle Scholar

  • Antonin, W., Ungricht, R., and Kutay, U. (2011). Traversing the NPC along the pore membrane: Targeting of membrane proteins to the INM. Nucleus 2, 87–91.CrossrefGoogle Scholar

  • Bilokapic, S. and Schwartz, T.U. (2012). 3D ultrastructure of the nuclear pore complex. Curr. Opin. Cell. Biol. 24, 86–91.CrossrefGoogle Scholar

  • Brohawn, S.G., Leksa, N.C., Spear, E.D., Rajashankar, K.R., and Schwartz, T.U. (2008). Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 322, 1369–1373.Google Scholar

  • Bui, K.H., von Appen, A., Diguilio, A.L., Ori, A., Sparks, L., Mackmull, M.T., Bock, T., Hagen, W., Andres-Pons, A., Glavy, J.S., et al. (2013). Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233–1243.Google Scholar

  • Busayavalasa, K., Chen, X., Farrants, A.K., Wagner, N., and Sabri, N. (2012). The Nup155-mediated organisation of inner nuclear membrane proteins is independent of Nup155 anchoring to the metazoan nuclear pore complex. J. Cell Sci. 125, 4214–4218.Google Scholar

  • Cairo, L.V., Ptak, C., and Wozniak, R.W. (2013). Mitosis-specific regulation of nuclear transport by the spindle assembly checkpoint protein Mad1p. Mol. Cell 49, 109–120.Google Scholar

  • Chen, X. and Xu, L. (2010). Specific nucleoporin requirement for Smad nuclear translocation. Mol. Cell Biol. 30, 4022–4034.CrossrefGoogle Scholar

  • Chen, X.Q., Du, X., Liu, J., Balasubramanian, M.K., and Balasundaram, D. (2004). Identification of genes encoding putative nucleoporins and transport factors in the fission yeast Schizosaccharomyces pombe: a deletion analysis. Yeast 21, 495–509.CrossrefGoogle Scholar

  • Dawson, T.R., Lazarus, M.D., Hetzer, M.W., and Wente, S.R. (2009). E.R. membrane-bending proteins are necessary for de novo nuclear pore formation. J. Cell. Biol. 184, 659–675.Google Scholar

  • DeGrasse, J.A., DuBois, K.N., Devos, D., Siegel, T.N., Sali, A., Field, M.C., Rout, M.P., and Chait, B.T. (2009). Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteomics 8, 2119–2130.CrossrefGoogle Scholar

  • Deng, M. and Hochstrasser, M. (2006). Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443, 827–831.Google Scholar

  • Dephoure, N., Zhou, C., Villen, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., and Gygi, S.P. (2008). A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. USA 105, 10762–10767.Google Scholar

  • Devos, D., Dokudovskaya, S., Alber, F., Williams, R., Chait, B.T., Sali, A., and Rout, M.P. (2004). Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol 2, e380.CrossrefGoogle Scholar

  • Doucet, C.M., Talamas, J.A., and Hetzer, M.W. (2010). Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141, 1030–1041.Google Scholar

  • Dultz, E., Zanin, E., Wurzenberger, C., Braun, M., Rabut, G., Sironi, L., and Ellenberg, J. (2008). Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell. Biol. 180, 857–865.Google Scholar

  • Eisenhardt, N., Redolfi, J., and Antonin, W. (2014). Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J. Cell Sci. 127, 908–921.Google Scholar

  • Fahrenkrog, B., Hubner, W., Mandinova, A., Pante, N., Keller, W., and Aebi, U. (2000). The yeast nucleoporin Nup53p specifically interacts with Nic96p and is directly involved in nuclear protein import. Mol. Biol. Cell 11, 3885–3896.CrossrefGoogle Scholar

  • Flemming, D., Sarges, P., Stelter, P., Hellwig, A., Bottcher, B., and Hurt, E. (2009). Two structurally distinct domains of the nucleoporin Nup170 cooperate to tether a subset of nucleoporins to nuclear pores. J. Cell Biol. 185, 387–395.Google Scholar

  • Flemming, D., Devos, D.P., Schwarz, J., Amlacher, S., Lutzmann, M., and Hurt, E. (2012). Analysis of the yeast nucleoporin Nup188 reveals a conserved S-like structure with similarity to karyopherins. J. Struct. Biol. 177, 99–105.Google Scholar

  • Franz, C., Askjaer, P., Antonin, W., Iglesias, C.L., Haselmann, U., Schelder, M., de Marco, A., Wilm, M., Antony, C., and Mattaj, I.W. (2005). Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates. EMBO J. 24, 3519–3531.CrossrefGoogle Scholar

  • Fried, H. and Kutay, U. (2003). Nucleocytoplasmic transport: taking an inventory. Cell. Mol. Life Sci. 60, 1659–1688.Google Scholar

  • Galy, V., Mattaj, I.W., and Askjaer, P. (2003). Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. Mol. Biol. Cell 14, 5104–5115.CrossrefGoogle Scholar

  • Gant, T.M. and Wilson, K.L. (1997). Nuclear assembly. Annu. Rev. Cell. Dev. Biol. 13, 669–695.CrossrefGoogle Scholar

  • Gigliotti, S., Callaini, G., Andone, S., Riparbelli, M.G., Pernas-Alonso, R., Hoffmann, G., Graziani, F., and Malva, C. (1998). Nup154, a new Drosophila gene essential for male and female gametogenesis is related to the nup155 vertebrate nucleoporin gene. J. Cell Biol. 142, 1195–1207.Google Scholar

  • Gomez-Ospina, N., Morgan, G., Giddings, T.H., Jr., Kosova, B., Hurt, E., and Winey, M. (2000). Yeast nuclear pore complex assembly defects determined by nuclear envelope reconstruction. J. Struct. Biol. 132, 1–5.Google Scholar

  • Grandi, P., Doye, V., and Hurt, E.C. (1993). Purification of NSP1 reveals complex formation with ‘GLFG’ nucleoporins and a novel nuclear pore protein NIC96. EMBO J. 12, 3061–3071.Google Scholar

  • Grandi, P., Schlaich, N., Tekotte, H., and Hurt, E.C. (1995). Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J. 14, 76–87.Google Scholar

  • Grandi, P., Dang, T., Pane, N., Shevchenko, A., Mann, M., Forbes, D., and Hurt, E. (1997). Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly. Mol. Biol. Cell 8, 2017–2038.CrossrefGoogle Scholar

  • Grossman, E., Medalia, O., and Zwerger, M. (2012). Functional architecture of the nuclear pore complex. Annu. Rev. Biophys. 41, 557–584.Google Scholar

  • Hachet, V., Busso, C., Toya, M., Sugimoto, A., Askjaer, P., and Gonczy, P. (2012). The nucleoporin Nup205/NPP-3 is lost near centrosomes at mitotic onset and can modulate the timing of this process in Caenorhabditis elegans embryos. Mol. Biol. Cell 23, 3111–3121.CrossrefGoogle Scholar

  • Handa, N., Kukimoto-Niino, M., Akasaka, R., Kishishita, S., Murayama, K., Terada, T., Inoue, M., Kigawa, T., Kose, S., Imamoto, N., et al. (2006). The crystal structure of mouse Nup35 reveals atypical RNP motifs and novel homodimerization of the RRM domain. J. Mol. Biol. 363, 114–124.Google Scholar

  • Hawryluk-Gara, L.A., Shibuya, E.K., and Wozniak, R.W. (2005). Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell 16, 2382–2394.Google Scholar

  • Hawryluk-Gara, L.A., Platani, M., Santarella, R., Wozniak, R.W., and Mattaj, I.W. (2008). Nup53 is required for nuclear envelope and nuclear pore complex assembly. Mol. Biol. Cell 19, 1753–1762.Google Scholar

  • Hulsmann, B.B., Labokha, A.A., and Gorlich, D. (2012). The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150, 738–751.Google Scholar

  • Ikegami, K. and Lieb, J.D. (2013). Integral nuclear pore proteins bind to Pol III-transcribed genes and are required for Pol III transcript processing in C. elegans. Mol. Cell 51, 840–849.Google Scholar

  • Iouk, T., Kerscher, O., Scott, R.J., Basrai, M.A., and Wozniak, R.W. (2002). The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol. 159, 807–819.Google Scholar

  • Itoh, G., Sugino, S., Ikeda, M., Mizuguchi, M., Kanno, S., Amin, M.A., Iemura, K., Yasui, A., Hirota, T., and Tanaka, K. (2013). Nucleoporin Nup188 is required for chromosome alignment in mitosis. Cancer Sci. 104, 871–879.Google Scholar

  • Jeudy, S. and Schwartz, T.U. (2007). Crystal structure of nucleoporin nic96 reveals a novel, intricate helical domain architecture. J. Biol. Chem. 282, 34904–34912.Google Scholar

  • Kehat, I., Accornero, F., Aronow, B.J., and Molkentin, J.D. (2011). Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J. Cell Biol. 193, 21–29.Google Scholar

  • Kenna, M.A., Petranka, J.G., Reilly, J.L., and Davis, L.I. (1996). Yeast N1e3p/Nup170p is required for normal stoichiometry of F.G. nucleoporins within the nuclear pore complex. Mol. Cell. Biol. 16, 2025–2036.CrossrefGoogle Scholar

  • Kerscher, O., Hieter, P., Winey, M., and Basrai, M.A. (2001). Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics 157, 1543–1553.Google Scholar

  • Kim, D.U., Hayles, J., Kim, D., Wood, V., Park, H.O., Won, M., Yoo, H.S., Duhig, T., Nam, M., Palmer, G., et al. (2010). Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 28, 617–623.CrossrefGoogle Scholar

  • King, M.C., Lusk, C.P., and Blobel, G. (2006). Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442, 1003–1007.Google Scholar

  • Kosova, B., Pante, N., Rollenhagen, C., and Hurt, E. (1999). Nup192p is a conserved nucleoporin with a preferential location at the inner site of the nuclear membrane. J. Biol. Chem. 274, 22646–22651.Google Scholar

  • Krull, S., Thyberg, J., Bjorkroth, B., Rackwitz, H.R., and Cordes, V.C. (2004). Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261–4277.CrossrefGoogle Scholar

  • Laurell, E., Beck, K., Krupina, K., Theerthagiri, G., Bodenmiller, B., Horvath, P., Aebersold, R., Antonin, W., and Kutay, U. (2011). Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144, 539–550.CrossrefGoogle Scholar

  • Leksa, N.C. and Schwartz, T.U. (2010). Membrane-coating lattice scaffolds in the nuclear pore and vesicle coats: commonalities, differences, challenges. Nucleus 1, 314–318.Google Scholar

  • Liang, Y. and Hetzer, M.W. (2011). Functional interactions between nucleoporins and chromatin. Curr. Opin. Cell Biol. 23, 65–70.Google Scholar

  • Liu, H.L., De Souza, C.P., Osmani, A.H., and Osmani, S.A. (2009). The three fungal transmembrane nuclear pore complex proteins of Aspergillus nidulans are dispensable in the presence of an intact An-Nup84–120. complex. Mol. Biol. Cell 20, 616–630.Google Scholar

  • Lusk, C.P., Makhnevych, T., Marelli, M., Aitchison, J.D., and Wozniak, R.W. (2002). Karyopherins in nuclear pore biogenesis: a role for Kap121p in the assembly of Nup53p into nuclear pore complexes. J. Cell Biol. 159, 267–278.Google Scholar

  • Lusk, C.P., Blobel, G., and King, M.C. (2007a). Highway to the inner nuclear membrane: rules for the road. Nat. Rev. Mol. Cell. Biol. 8, 414–420.CrossrefGoogle Scholar

  • Lusk, C.P., Waller, D.D., Makhnevych, T., Dienemann, A., Whiteway, M., Thomas, D.Y., and Wozniak, R.W. (2007b). Nup53p is a target of two mitotic kinases, Cdk1p and Hrr25p. Traffic 8, 647–660.Google Scholar

  • Lutzmann, M., Kunze, R., Buerer, A., Aebi, U., and Hurt, E. (2002). Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397.CrossrefGoogle Scholar

  • Lutzmann, M., Kunze, R., Stangl, K., Stelter, P., Toth, K.F., Bottcher, B., and Hurt, E. (2005). Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem. 280, 18442–18451.Google Scholar

  • Maimon, T., Elad, N., Dahan, I., and Medalia, O. (2012). The human nuclear pore complex as revealed by cryo-electron tomography. Structure 20, 998–1006.CrossrefGoogle Scholar

  • Makhnevych, T., Lusk, C.P., Anderson, A.M., Aitchison, J.D., and Wozniak, R.W. (2003). Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115, 813–823.CrossrefGoogle Scholar

  • Makio, T., Stanton, L.H., Lin, C.C., Goldfarb, D.S., Weis, K., and Wozniak, R.W. (2009). The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol. 185, 459–473.Google Scholar

  • Mans, B.J., Anantharaman, V., Aravind, L., and Koonin, E.V. (2004). Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3, 1612–1637.CrossrefGoogle Scholar

  • Mansfeld, J., Guttinger, S., Hawryluk-Gara, L.A., Pante, N., Mall, M., Galy, V., Haselmann, U., Muhlhausser, P., Wozniak, R.W., Mattaj, I.W., et al. (2006). The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol. Cell 22, 93–103.CrossrefGoogle Scholar

  • Marelli, M., Aitchison, J.D., and Wozniak, R.W. (1998). Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J. Cell. Biol. 143, 1813–1830..Google Scholar

  • Marelli, M., Lusk, C.P., Chan, H., Aitchison, J.D., and Wozniak, R.W. (2001). A link between the synthesis of nucleoporins and the biogenesis of the nuclear envelope. J. Cell Biol. 153, 709–724.Google Scholar

  • Meinema, A.C., Laba, J.K., Hapsari, R.A., Otten, R., Mulder, F.A., Kralt, A., van den Bogaart, G., Lusk, C.P., Poolman, B., and Veenhoff, L.M. (2011). Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science 333, 90–93.Google Scholar

  • Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., et al. (2006). Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21, 811–823.CrossrefGoogle Scholar

  • Miller, B.R., Powers, M., Park, M., Fischer, W., and Forbes, D.J. (2000). Identification of a new vertebrate nucleoporin, Nup188, with the use of a novel organelle trap assay. Mol. Biol. Cell 11, 3381–3396.CrossrefGoogle Scholar

  • Mitchell, J.M., Mansfeld, J., Capitanio, J., Kutay, U., and Wozniak, R.W. (2010). Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J. Cell Biol. 191, 505–521.Google Scholar

  • Mohr, D., Frey, S., Fischer, T., Guttler, T., and Gorlich, D. (2009). Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553.CrossrefGoogle Scholar

  • Nehrbass, U., Rout, M.P., Maguire, S., Blobel, G., and Wozniak, R.W. (1996). The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex. J. Cell Biol. 133, 1153–1162.Google Scholar

  • Neumann, N., Lundin, D., and Poole, A.M. (2010). Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One 5, e13241.Google Scholar

  • Ohba, T., Schirmer, E.C., Nishimoto, T., and Gerace, L. (2004). Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J. Cell Biol. 167, 1051–1062.Google Scholar

  • Onischenko, E., Stanton, L.H., Madrid, A.S., Kieselbach, T., and Weis, K. (2009). Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J. Cell Biol. 185, 475–491.Google Scholar

  • Ori, A., Banterle, N., Iskar, M., Andres-Pons, A., Escher, C., Khanh Bui, H., Sparks, L., Solis-Mezarino, V., Rinner, O., Bork, P., et al. (2013). Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648.CrossrefGoogle Scholar

  • Osmani, A.H., Davies, J., Liu, H.L., Nile, A., and Osmani, S.A. (2006). Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol. Biol. Cell 17, 4946–4961.CrossrefGoogle Scholar

  • Patel, S.S. and Rexach, M.F. (2008). Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. Mol. Cell Proteomics 7, 121–131.CrossrefGoogle Scholar

  • Powell, L. and Burke, B. (1990). Internuclear exchange of an inner nuclear membrane protein (p55). in heterokaryons: in vivo evidence for the interaction of p55 with the nuclear lamina. J. Cell. Biol. 111, 2225–2234.Google Scholar

  • Rabut, G., Doye, V., and Ellenberg, J. (2004). Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6, 1114–1121.CrossrefGoogle Scholar

  • Reichelt, R., Holzenburg, A., Buhle, E.L., Jr., Jarnik, M., Engel, A., and Aebi, U. (1990). Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110, 883–894.Google Scholar

  • Ribbeck, K. and Gorlich, D. (2002). The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671.CrossrefGoogle Scholar

  • Rodenas, E., Klerkx, E.P., Ayuso, C., Audhya, A., and Askjaer, P. (2009). Early embryonic requirement for nucleoporin Nup35/NPP-19 in nuclear assembly. Dev. Biol. 327, 399–409.Google Scholar

  • Rothballer, A. and Kutay, U. (2013). Poring over pores: nuclear pore complex insertion into the nuclear envelope. Trends Biochem. Sci. 38, 292–301.Google Scholar

  • Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y., and Chait, B.T. (2000). The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651.Google Scholar

  • Sachdev, R., Sieverding, C., Flotenmeyer, M., and Antonin, W. (2012). The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes. Mol. Biol. Cell 23, 740–749.CrossrefGoogle Scholar

  • Sampathkumar, P., Kim, S.J., Upla, P., Rice, W.J., Phillips, J., Timney, B.L., Pieper, U., Bonanno, J.B., Fernandez-Martinez, J., Hakhverdyan, Z., et al. (2013). Structure, dynamics, evolution, and function of a major scaffold component in the nuclear pore complex. Structure 21, 560–571.CrossrefGoogle Scholar

  • Savas, J.N., Toyama, B.H., Xu, T., Yates, J.R., and Hetzer, M.W. (2012). Extremely long-lived nuclear pore proteins in the rat brain. Science 335, 942.Google Scholar

  • Schetter, A., Askjaer, P., Piano, F., Mattaj, I., and Kemphues, K. (2006). Nucleoporins NPP-1, NPP-3, NPP-4, NPP-11 and NPP-13 are required for proper spindle orientation in C. elegans. Dev. Biol. 289, 360–371.Google Scholar

  • Schlaich, N.L., Haner, M., Lustig, A., Aebi, U., and Hurt, E.C. (1997). In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p. Mol. Biol. Cell 8, 33–46.CrossrefGoogle Scholar

  • Schooley, A., Vollmer, B., and Antonin, W. (2012). Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. Chromosoma 121, 539–554.Google Scholar

  • Schrader, N., Stelter, P., Flemming, D., Kunze, R., Hurt, E., and Vetter, I.R. (2008). Structural basis of the nic96 subcomplex organization in the nuclear pore channel. Mol. Cell 29, 46–55.CrossrefGoogle Scholar

  • Scott, R.J., Lusk, C.P., Dilworth, D.J., Aitchison, J.D., and Wozniak, R.W. (2005). Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16, 4362–4374.CrossrefGoogle Scholar

  • Seo, H.S., Blus, B.J., Jankovic, N.Z., and Blobel, G. (2013). Structure and nucleic acid binding activity of the nucleoporin Nup157. Proc. Natl. Acad. Sci. USA 110, 16450–16455.CrossrefGoogle Scholar

  • Shulga, N. and Goldfarb, D.S. (2003). Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating. Mol. Cell Biol. 23, 534–542.CrossrefGoogle Scholar

  • Shulga, N., Mosammaparast, N., Wozniak, R., and Goldfarb, D.S. (2000). Yeast nucleoporins involved in passive nuclear envelope permeability. J. Cell. Biol. 149, 1027–1038.Google Scholar

  • Soullam, B. and Worman, H.J. (1993). The amino-terminal domain of the lamin B receptor is a nuclear envelope targeting signal. J. Cell Biol. 120, 1093–1100.Google Scholar

  • Strawn, L.A., Shen, T., Shulga, N., Goldfarb, D.S., and Wente, S.R. (2004). Minimal nuclear pore complexes define F.G. repeat domains essential for transport. Nat. Cell. Biol. 6, 197–206.CrossrefGoogle Scholar

  • Tamura, K., Fukao, Y., Iwamoto, M., Haraguchi, T., and Hara-Nishimura, I. (2010). Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 22, 4084–4097.CrossrefGoogle Scholar

  • Theerthagiri, G., Eisenhardt, N., Schwarz, H., and Antonin, W. (2010). The nucleoporin Nup188 controls passage of membrane proteins across the nuclear pore complex. J. Cell Biol. 189, 1129–1142.Google Scholar

  • Thierbach, K., von Appen, A., Thoms, M., Beck, M., Flemming, D., and Hurt, E. (2013). Protein interfaces of the conserved Nup84 complex from Chaetomium thermophilum shown by crosslinking mass spectrometry and electron microscopy. Structure 21, 1672–1682.CrossrefGoogle Scholar

  • Toyama, B.H., Savas, J.N., Park, S.K., Harris, M.S., Ingolia, N.T., Yates, J.R., 3rd, and Hetzer, M.W. (2013). Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982.CrossrefGoogle Scholar

  • Tran, E.J. and Wente, S.R. (2006). Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053.Google Scholar

  • Tran, E.J., Bolger, T.A., and Wente, S.R. (2007). SnapShot: nuclear transport. Cell 131, 420.Google Scholar

  • Turgay, Y., Ungricht, R., Rothballer, A., Kiss, A., Csucs, G., Horvath, P., and Kutay, U. (2010). A classical NLS and the SUN domain contribute to the targeting of SUN2 to the inner nuclear membrane. EMBO J. 29, 2262–2275.CrossrefGoogle Scholar

  • Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., et al. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.Google Scholar

  • Van de Vosse, D.W., Wan, Y., Wozniak, R.W., and Aitchison, J.D. (2011). Role of the nuclear envelope in genome organization and gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 147–166.Google Scholar

  • Van de Vosse, D.W., Wan, Y., Lapetina, D.L., Chen, W.M., Chiang, J.H., Aitchison, J.D., and Wozniak, R.W. (2013). A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell 152, 969–983.Google Scholar

  • Vollmer, B., Schooley, A., Sachdev, R., Eisenhardt, N., Schneider, A.M., Sieverding, C., Madlung, J., Gerken, U., Macek, B., and Antonin, W. (2012). Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J. 31, 4072–4084.CrossrefGoogle Scholar

  • Wente, S.R. and Rout, M.P. (2010). The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2, a000562.Google Scholar

  • Whalen, W.A., Yoon, J.H., Shen, R., and Dhar, R. (1999). Regulation of mRNA export by nutritional status in fission yeast. Genetics 152, 827–838.Google Scholar

  • Whittle, J.R. and Schwartz, T.U. (2009). Architectural nucleoporins Nup157/170 and Nup133 are structurally related and descend from a second ancestral element. J. Biol. Chem. 284, 28442–28452.Google Scholar

  • Wozniak, R., Burke, B., and Doye, V. (2010). Nuclear transport and the mitotic apparatus: an evolving relationship. Cell. Mol. Life Sci. 67, 2215–2230.Google Scholar

  • Yang, Q., Rout, M.P., and Akey, C.W. (1998). Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell 1, 223–234.Google Scholar

  • Yavuz, S., Santarella-Mellwig, R., Koch, B., Jaedicke, A., Mattaj, I.W., and Antonin, W. (2010). NLS-mediated NPC functions of the nucleoporin Pom121. FEBS Lett. 584, 3292–3298.Google Scholar

  • Zabel, U., Doye, V., Tekotte, H., Wepf, R., Grandi, P., and Hurt, E.C. (1996). Nic96p is required for nuclear pore formation and functionally interacts with a novel nucleoporin, Nup188p. J. Cell Biol. 133, 1141–1152.Google Scholar

  • Zhang, X., Chen, S., Yoo, S., Chakrabarti, S., Zhang, T., Ke, T., Oberti, C., Yong, S.L., Fang, F., Li, L., et al. (2008). Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135, 1017–1027.Google Scholar

  • Zuleger, N., Kelly, D.A., Richardson, A.C., Kerr, A.R., Goldberg, M.W., Goryachev, A.B., and Schirmer, E.C. (2011). System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J. Cell Biol. 193, 109–123.Google Scholar

About the article

Benjamin Vollmer

Benjamin Vollmer studied Biology at the University of Tübingen and received the Diploma degree in 2010. He is currently pursuing the PhD degree within the group of Dr. Wolfram Antonin at the Friedrich Miescher Laboratory of the Max Planck Society in Tübingen. His research focuses on membrane interacting proteins that are involved in the formation of nuclear pore complexes.

Wolfram Antonin

Wolfram Antonin is a Max Planck Research Group Leader at the Friedrich Miescher Laboratory of the Max Planck Society in Tübingen. He studied Biochemistry at the University of Hannover and obtained his PhD degree for work with Reinhard Jahn at the Max Planck Institute for Biophysical Chemistry in Göttingen on the identification and characterization of endosomal SNARE proteins. After postdoc work at the European Molecular Biology Laboratory (EMBL, Heidelberg) with Iain Mattaj he joined the Friedrich Miescher Laboratory in 2006 working on nuclear reformation at the end of mitosis including the assembly of nuclear pore complexes.


Corresponding author: Wolfram Antonin, Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, D-72076 Tübingen, Germany, e-mail:


Received: 2013-11-25

Accepted: 2014-02-22

Published Online: 2014-02-25

Published in Print: 2014-05-01


Citation Information: Biological Chemistry, Volume 395, Issue 5, Pages 515–528, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0285.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anne de Bruyn Kops and Christine Guthrie
G3: Genes|Genomes|Genetics, 2018, Volume 8, Number 9, Page 2991
[2]
Ginevra Zanni, P. De Magistris, M. Nardella, E. Bellacchio, S. Barresi, A. Sferra, A. Ciolfi, M. Motta, H. Lue, D. Moreno-Andres, M. Tartaglia, E. Bertini, and Wolfram Antonin
The Cerebellum, 2019, Volume 18, Number 3, Page 422
[3]
Marion Weberruss and Wolfram Antonin
Journal of Cell Science, 2016, Volume 129, Number 24, Page 4439
[4]
Masaaki Iwamoto, Hiroko Osakada, Chie Mori, Yasuhiro Fukuda, Koji Nagao, Chikashi Obuse, Yasushi Hiraoka, and Tokuko Haraguchi
Journal of Cell Science, 2017, Volume 130, Number 10, Page 1822
[5]
Ashley Gillon, Kathrine Nielsen, Charlotte Steel, Jon Cornwall, and Philip Sheard
GeroScience, 2018
[6]
Paola De Magistris, Marianna Tatarek-Nossol, Manfred Dewor, and Wolfram Antonin
Journal of Cell Science, 2018, Volume 131, Number 1, Page jcs208538
[7]
Luise Apelt, Kevin E. Knockenhauer, Nina C. Leksa, Nouhad Benlasfer, Thomas U. Schwartz, and Ulrich Stelzl
Molecular & Cellular Proteomics, 2016, Volume 15, Number 8, Page 2594
[8]
George J. Stanley, Ariberto Fassati, and Bart W. Hoogenboom
Seminars in Cell & Developmental Biology, 2017, Volume 68, Page 42
[9]
Pau Pascual-Garcia, Brian Debo, Jennifer R. Aleman, Jessica A. Talamas, Yemin Lan, Nha H. Nguyen, Kyoung J. Won, and Maya Capelson
Molecular Cell, 2017, Volume 66, Number 1, Page 63
[10]
Ajay S. Labade, Krishanpal Karmodiya, and Kundan Sengupta
Epigenetics & Chromatin, 2016, Volume 9, Number 1
[11]
Naomi Moris, Jaya Shrivastava, Linda Jeffery, Juan-Juan Li, Jacqueline Hayles, and Paul Nurse
Cell Cycle, 2016, Volume 15, Number 22, Page 3121
[12]
Florencia del Viso, Fang Huang, Jordan Myers, Madeleine Chalfant, Yongdeng Zhang, Nooreen Reza, Joerg Bewersdorf, C. Patrick Lusk, and Mustafa K. Khokha
Developmental Cell, 2016, Volume 38, Number 5, Page 478
[13]
Thomas U. Schwartz
Journal of Molecular Biology, 2016, Volume 428, Number 10, Page 1986
[14]
Kevin E. Knockenhauer and Thomas U. Schwartz
Cell, 2016, Volume 164, Number 6, Page 1162
[15]
Daniela A Braun, Carolin E Sadowski, Stefan Kohl, Svjetlana Lovric, Susanne A Astrinidis, Werner L Pabst, Heon Yung Gee, Shazia Ashraf, Jennifer A Lawson, Shirlee Shril, Merlin Airik, Weizhen Tan, David Schapiro, Jia Rao, Won-Il Choi, Tobias Hermle, Markus J Kemper, Martin Pohl, Fatih Ozaltin, Martin Konrad, Radovan Bogdanovic, Rainer Büscher, Udo Helmchen, Erkin Serdaroglu, Richard P Lifton, Wolfram Antonin, and Friedhelm Hildebrandt
Nature Genetics, 2016, Volume 48, Number 4, Page 457
[16]
Tino Pleiner, Mark Bates, Sergei Trakhanov, Chung-Tien Lee, Jan Erik Schliep, Hema Chug, Marc Böhning, Holger Stark, Henning Urlaub, and Dirk Görlich
eLife, 2015, Volume 4
[17]
Alexander von Appen and Martin Beck
Journal of Molecular Biology, 2016, Volume 428, Number 10, Page 2001
[18]
Anna Katharina Schellhaus, Paola De Magistris, and Wolfram Antonin
Journal of Molecular Biology, 2016, Volume 428, Number 10, Page 1962
[19]
Alexander von Appen, Jan Kosinski, Lenore Sparks, Alessandro Ori, Amanda L. DiGuilio, Benjamin Vollmer, Marie-Therese Mackmull, Niccolo Banterle, Luca Parca, Panagiotis Kastritis, Katarzyna Buczak, Shyamal Mosalaganti, Wim Hagen, Amparo Andres-Pons, Edward A. Lemke, Peer Bork, Wolfram Antonin, Joseph S. Glavy, Khanh Huy Bui, and Martin Beck
Nature, 2015, Volume 526, Number 7571, Page 140
[20]
Jessica Fischer, Roman Teimer, Stefan Amlacher, Ruth Kunze, and Ed Hurt
Nature Structural & Molecular Biology, 2015, Volume 22, Number 10, Page 774
[21]
Benjamin Vollmer, Michael Lorenz, Daniel Moreno-Andrés, Mona Bodenhöfer, Paola De Magistris, Susanne Adina Astrinidis, Allana Schooley, Matthias Flötenmeyer, Sebastian Leptihn, and Wolfram Antonin
Developmental Cell, 2015, Volume 33, Number 6, Page 717
[22]
Kotaro Kelley, Kevin E Knockenhauer, Greg Kabachinski, and Thomas U Schwartz
Nature Structural & Molecular Biology, 2015

Comments (0)

Please log in or register to comment.
Log in