Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 395, Issue 5


How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport

Lea Møller Jensen
  • DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, C., Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Ann Halkier
  • DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, C., Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Meike Burow
  • Corresponding author
  • DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, C., Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-01 | DOI: https://doi.org/10.1515/hsz-2013-0286


Identification of enzymes, regulators and transporters involved in different metabolic processes is the foundation to understand how organisms function. There are, however, many difficulties in identifying candidate genes as well as in proving their in vivo roles. In this review, we describe different approaches utilized in Arabidopsis thaliana to identify gene candidates and experiments required to prove the function of a given candidate. For example, we use the production of methionine-derived aliphatic glucosinolates that represent major defence compounds in A. thaliana. Nearly all biosynthetic genes, as well as the first sets of regulators and transporters, have been identified. An array of approaches, i.e. classical mapping, quantitative trait loci (QTL) mapping, eQTL mapping, co-expression, genome wide association studies (GWAS), mutant screens and phylogenetic analyses, has been exploited to increase the number of identified genes. Here we summarize the lessons learned from the different approaches used over the years with the aim to help designing and combining new approaches in the future.

Keywords: aliphatic glucosinolates; Arabidopsis thaliana; gene identification; mapping; mutant screen


  • Alonso-Blanco, C. and Koornneef, M. (2000). Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 5, 22–29.Google Scholar

  • Andersen, T.G., Nour-Eldin, H.H., Fuller, V.L., Olsen, C.E., Burow, M., and Halkier. B.A. (2013). Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25, 3133–3145.CrossrefGoogle Scholar

  • Atwell, S., Huang, Y.S., Vilhjalmsson, B.J., Willems, G., Horton, M., Li, Y., Meng, D., Platt, A., Tarone, A.M., Hu, T.T., et al. (2010). Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631.Google Scholar

  • Bak, S. and Feyereisen, R. (2001). The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol. 127, 108–118.Google Scholar

  • Beekwilder, J., van Leeuwen, W., van Dam, N.M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados, L., Molthoff, J.W., Schipper, B., et al. (2008). The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS One 3, e2068.Google Scholar

  • Benderoth, M., Textor, S., Windsor, A.J., Mitchell-Olds, T., Gershenzon, J., and Kroymann, J. (2006). Positive selection driving diversification in plant secondary metabolism. Proc. Natl. Acad. Sci. USA 103, 9118–9123.CrossrefGoogle Scholar

  • Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Vanonckelen, H., Vanmontagu, M., and Inze, D. (1995). Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 1405–1419.CrossrefGoogle Scholar

  • Chan, E.K., Rowe, H.C., Corwin, J.A., Joseph, B., and Kliebenstein, D.J. (2011). Combining genome–wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol. 9, e1001125.CrossrefGoogle Scholar

  • Chen, S.X., Glawischnig, E., Jorgensen, K., Naur, P., Jorgensen, B., Olsen, C.E., Hansen, C.H., Rasmussen, H., Pickett, J.A., and Halkier, B.A. (2003). CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J. 33, 923–937.Google Scholar

  • Chisholm, M.D. and Wetter, L.R. (1964). Biosynthesis of mustard oil glucosides. 4. Administration of methionine-C14 + related compounds to horseradish. Can. J. Biochem. Phys. 42, 1033–1040.Google Scholar

  • Cubillos, F.A., Yansouni, J., Khalili, H., Balzergue, S., Elftieh, S., Martin-Magniette, M.L., Serrand, Y., Lepiniec, L., Baud, S., Dubreucq, B., et al. (2012). Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures. Bmc Genomics 13, 117.CrossrefGoogle Scholar

  • de Quiros, H.C., Magrath, R., McCallum, D., Kroymann, J., Scnabelrauch, D., Mitchell-Olds, T., and Mithen, R. (2000). Alpha-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor. Appl. Genet. 101, 429–437.Google Scholar

  • Delarue, M., Prinsen, E., Van Onckelen, H., Caboche, M., and Bellini, C. (1998). Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J. 14, 603–611.CrossrefGoogle Scholar

  • Diebold, R., Schuster, J., Daschner, K., and Binder, S. (2002). The branched–chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol. 129, 540–550.Google Scholar

  • Dixon, D.P., Skipsey, M., and Edwards, R. (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71, 338–350.CrossrefGoogle Scholar

  • Gachon, C.M.M., Langlois-Meurinne, M., Henry, Y., and Saindrenan, P. (2005). Transcriptional co–regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Mol. Biol. 58, 229–245.Google Scholar

  • Geu-Flores, F., Nielsen, M.T., Nafisi, M., Moldrup, M.E., Olsen, C.E., Motawia, M.S., and Halkier, B.A. (2009). Glucosinolate engineering identifies γ-glutamyl peptidase. Nat. Chem. Biol. 5, 575–577.CrossrefGoogle Scholar

  • Geu-Flores, F., Moldrup, M.E., Bottcher, C., Olsen, C.E., Scheel, D., and Halkier, B.A. (2011). Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23, 2456–2469.CrossrefGoogle Scholar

  • Gigolashvili, T., Yatusevich, R., Berger, B., Muller, C., and Flugge, U.I. (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51, 247–261.Google Scholar

  • Gigolashvili, T., Engqvist, M., Yatusevich, R., Muller, C., and Flugge, U.I. (2008). HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol. 177, 627–642.Google Scholar

  • Gigolashvili, T., Yatusevich, R., Rollwitz, I., Humphry, M., Gershenzon, J., and Flugge, U.I. (2009). The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21, 1813–1829.CrossrefGoogle Scholar

  • Gigolashvili, T., Geier, M., Ashykhmina, N., Frerigmann, H., Wulfert, S., Krueger, S., Mugford, S.G., Kopriva, S., Haferkamp, I., and Flugge, U.I. (2012). The Arabidopsis thylakoid ADP/ATP carrier TAAC Has an additional role in supplying plastidic phosphoadenosine 5′-phosphosulfate to the cytosol. Plant Cell 24, 4187–4204.CrossrefGoogle Scholar

  • Grubb, C.D., Zipp, B.J., Ludwig-Muller, J., Masuno, M.N., Molinski, T.F., and Abel, S. (2004). Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 40, 893–908.Google Scholar

  • Hansen, C.H., Wittstock, U., Olsen, C.E., Hick, A.J., Pickett, J.A., and Halkier, B.A. (2001). Cytochrome P450CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J. Biol. Chem. 276, 11078–11085.Google Scholar

  • Hansen, B.G., Kliebenstein, D.J., and Halkier, B.A. (2007). Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50, 902–910.CrossrefGoogle Scholar

  • Hansen, B.G., Kerwin, R.E., Ober, J.A., Lambrix, V.M., Mitchell-Olds, T., Gershenzon, J., Halkier, B.A., and Kliebenstein, D.J. (2008). A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol. 148, 2096–2108.Google Scholar

  • Haughn, G.W., Davin, L., Giblin, M., and Underhill, E.W. (1991). Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana – the glucosinolates. Plant Physiol. 97, 217–226.Google Scholar

  • Hemm, M.R., Ruegger, M.O., and Chapple, C. (2003). The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15, 179–194.CrossrefGoogle Scholar

  • Hirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., et al. (2005). Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J. Biol. Chem. 280, 25590–25595.Google Scholar

  • Hirai, M.Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., Araki, R., Sakurai, N., Suzuki, H., Aoki, K., et al. (2007). Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc. Natl. Acad. Sci. USA 104, 6478–6483.CrossrefGoogle Scholar

  • Keurentjes, J.J.B., Fu, J.Y., Terpstra, I.R., Garcia, J.M., van den Ackerveken, G., Snoek, L.B., Peeters, A., J.M., Vreugdenhil, D., Koornneef, M., and Jansen, R.C. (2007). Regulatory network construction in Arabidopsis by using genome–wide gene expression quantitative trait loci. Proc. Natl. Acad. Sci. USA 104, 1708–1713.CrossrefGoogle Scholar

  • Klein, M. and Papenbrock, J. (2004). The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J. Exp. Bot. 55, 1809–1820.Google Scholar

  • Kliebenstein, D.J., Gershenzon, J., and Mitchell-Olds, T. (2001a). Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159, 359–370.Google Scholar

  • Kliebenstein, D.J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J., and Mitchell-Olds, T. (2001b). Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811–825.Google Scholar

  • Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J., and Mitchell-Olds, T. (2001c). Gene duplication in the diversification of secondary metabolism: Tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13, 681–693.CrossrefGoogle Scholar

  • Kliebenstein, D.J., West, M.A.L., van Leeuwen, H., Loudet, O., Doerge, R.W., and St Clair, D.A. (2006). Identification of QTLs controlling gene expression networks defined a priori. BMC Bioinformatics 7, 308.CrossrefGoogle Scholar

  • Kliebenstein, D.J., D’Auria, J.C., Behere, A.S., Kim, J.H., Gunderson, K.L., Breen, J.N., Lee, G., Gershenzon, J., Last, R.L., and Jander, G. (2007). Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J. 51, 1062–1076.CrossrefGoogle Scholar

  • Knill, T., Schuster, J., Reichelt, M., Gershenzon, J., and Binder, S. (2008). Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol. 146, 1028–1039.Google Scholar

  • Knill, T., Reichelt, M., Paetz, C., Gershenzon, J., and Binder, S. (2009). Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation. Plant Mol. Biol. 71, 227–239.Google Scholar

  • Knoke, B., Textor, S., Gershenzon, J., and Schuster, S. (2009). Mathematical modelling of aliphatic glucosinolate chain length distribution in Arabidopsis thaliana leaves. Phytochem. Rev. 8, 39–51.CrossrefGoogle Scholar

  • Kopycki, J., Wieduwild, E., Kohlschmidt, J., Brandt, W., Stepanova, A.N., Alonso, J.M., Pedras, M.S.C., Abel, S., and Grubb, C.D. (2013). Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition. Biochem. J. 450, 37–46.Google Scholar

  • Kroymann, J., Textor, S., Tokuhisa, J.G., Falk, K.L., Bartram, S., Gershenzon, J., and Mitchell-Olds. T. (2001). A gene controlling variation in arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 127, 1077–1088.Google Scholar

  • Kroymann, J., Donnerhacke, S., Schnabelrauch, D., and Mitchell-Olds, T. (2003). Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc. Natl. Acad. Sci. USA 100, 14587–14592.CrossrefGoogle Scholar

  • Levy, M., Wang, Q.M., Kaspi, R., Parrella, M.P., and Abel, S. (2005). Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J. 43, 79–96.Google Scholar

  • Li, Y., Baldauf, S., Lim, E.K., and Bowles, D.J. (2001). Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J. Biol. Chem. 276, 4338–4343.Google Scholar

  • Li, J., Hansen, B.G., Ober, J.A., Kliebenstein, D.J., and Halkier, B.A. (2008). Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol. 148, 1721–1733.Google Scholar

  • Luczak, S., Forlani, F., and Papenbrock, J. (2013). Desulfo-glucosinolate sulfotransferases isolated from several Arabidopsis thaliana ecotypes differ in their sequence and enzyme kinetics. Plant Physiol. Biochem. 63, 15–23.CrossrefGoogle Scholar

  • Magrath, R., Bano, F., Morgner, M., Parkin, I., Sharpe, A., Lister, C., Dean, C., Turner, J., Lydiate, D., and Mithen, R. (1994). Genetics of aliphatic glucosinolates.1. Side-chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72, 290–299.CrossrefGoogle Scholar

  • Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K., and Takahashi, H. (2006). Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18, 3235–3251.CrossrefGoogle Scholar

  • Mikkelsen, M.D., Naur, P., and Halkier, B.A. (2004). Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J. 37, 770–777.Google Scholar

  • Mithen, R., Clarke, J., Lister, C., and Dean, C. (1995). Genetics of aliphatic glucosinolates.3. Side-chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity 74, 210–215.CrossrefGoogle Scholar

  • Naur, P., Petersen, B.L., Mikkelsen, M.D., Bak, S., Rasmussen, H., Olsen, C.E., and Halkier, B.A. (2003). CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol. 133, 63–72.Google Scholar

  • Nelson, D.R., Kamataki, T., Waxman, D.J., Guengerich, F.P., Estabrook, R.W., Feyereisen, R., Gonzalez, F.J., Coon, M.J., Gunsalus, I.C., Gotoh, O., et al. (1993). The P450 superfamily – update on new sequences, gene-mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12, 1–51.CrossrefGoogle Scholar

  • Nour-Eldin, H.H., Andersen, T.G., Burow, M., Madsen, S.R., Jorgensen, M.E., Olsen, C.E., Dreyer, I., Hedrich, R., Geiger, D., and Halkier, B.A. (2012). NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488, 531–534.Google Scholar

  • Paquette, S.M., Bak, S., and Feyereisen, R. (2000). Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol. 19, 307–317.CrossrefGoogle Scholar

  • Paquette, S., Moller, B.L., and Bak, S. (2003). On the origin of family 1 plant glycosyltransferases. Phytochemistry 62, 399–413.CrossrefGoogle Scholar

  • Petersen, B.L., Andreasson, E., Bak, S., Agerbirk, N., and Halkier, B.A. (2001). Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta 212, 612–618.Google Scholar

  • Piotrowski, M., Schemenewitz, A., Lopukhina, A., Muller, A., Janowitz, T., Weiler, E.W., and Oecking, C. (2004). Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J. Biol. Chem. 279, 50717–50725.Google Scholar

  • Qi, T.C., Song, S.S., Ren, Q.C., Wu, D.W., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C.M., and Xie, D.X. (2011). The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23, 1795–1814.CrossrefGoogle Scholar

  • Reintanz, B., Lehnen, M., Reichelt, M., Gershenzon, J., Kowalczyk, M., Sandberg, G., Godde, M., Uhl, R., and Palme, K. (2001). bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13, 351–367.CrossrefGoogle Scholar

  • Sawada, Y., Kuwahara, A., Nagano, M., Narisawa, T., Sakata, A., Saito, K., and Hirai, M.Y. (2009a). Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol. 50, 1181–1190.Google Scholar

  • Sawada, Y., Toyooka, K., Kuwahara, A., Sakata, A., Nagano, M., Saito, K., and Hirai, M.Y. (2009b). Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol. 50, 1579–1586.Google Scholar

  • Schlaeppi, K., Bodenhausen, N., Buchala, A., Mauch, F., and Reymond, P. (2008). The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 55, 774–786.Google Scholar

  • Schuster, J., Knill, T., Reichelt, M., Gershenzon, J., and Binder, S. (2006). Branched–chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine–derived glucosinolates in Arabidopsis. Plant Cell 18, 2664–2679.CrossrefGoogle Scholar

  • Schweizer, F., Fernandez-Calvo, P., Zander, M., Diez-Diaz, M., Fonseca, S., Glauser, G., Lewsey, M.G., Ecker, J.R., Solano, R., and Reymond, P. (2013). Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25, 3117–3132.CrossrefGoogle Scholar

  • Skirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., Zanor, M.I., Gershenzon, J., Strnad, M., Szopa, J., et al. (2006). DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J. 47, 10–24.CrossrefGoogle Scholar

  • Sonderby, I.E., Hansen, B.G., Bjarnholt, N., Ticconi, C., Halkier, B.A., and Kliebenstein, D.J. (2007). A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One 2, e1322.Google Scholar

  • Takahashi, H., Kopriva, S., Giordano, M., Saito, K., and Hell, R. (2011). Sulfur Assimilation in Photosynthetic Organisms: Molecular Functions and Regulations of Transporters and Assimilatory Enzymes. In: Annual Review of Plant Biology, S.E. Fienberg, ed. (Palo Alto: Annual Reviews), vol. 62, pp. 157–184.Google Scholar

  • Textor, S., de Kraker, J.W., Hause, B., Gershenzon, J., and Tokuhisa, J.G. (2007). MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in arabidopsis. Plant Physiol. 144, 60–71.Google Scholar

  • Weigel, D. (2012). Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 158, 2–22.Google Scholar

  • Wentzell, A.M., Rowe, H.C., Hansen, B.G., Ticconi, C., Halkier, B.A., and Kliebenstein, D.J. (2007). Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genetics 3, 1687–1701.CrossrefGoogle Scholar

  • West, M.A.L., Kim, K., Kliebenstein, D.J., van Leeuwen, H., Michelmore, R.W., Doerge, R.W., and Clair, D.A.S. (2007). Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175, 1441–1450.Google Scholar

About the article

Lea Møller Jensen

Lea Møller Jensen holds an MSc in Biology-Biotechnology from 2010 received her PhD degree from the Faculty of Science at the University of Copenhagen in 2014. Her research interests lies within understanding the regulatory networks controlling glucosinolate biosynthesis and how these link to other phenotypes crucial for plant survival. The research aims at understanding how natural variation impacts the link from genotype-to-phenotype. Elucidation of the underlying molecular mechanisms is a necessity for understanding variation and changes in these regulatory networks.

Barbara Ann Halkier

Barbara Ann Halkier, Head of DynaMo Center of Excellence at the University of Copenhagen, is leading in the field within pathway elucidation, identification of biosynthetic genes, and transporters of glucosinolates. She is actively pursuing pathway engineering in various host organisms, and has produced glucosinolates in yeast on a robust platform based on stable genomic expression. She has identified the NPF family as transporter family for secondary metabolites, exemplified by the glucosinolate transporters AtGTR1 and AtGTR2. She has generated highly valuable tool in the form of transporter cDNA libraries to be expressed in Xenopus oocytes and screened for uptake of small molecules. She has advanced ligase-independent USER cloning technologies for high-throughput transfer of cDNAs in systems biology.

Meike Burow

Meike Burow is renowned for contributions to our understanding of the biosynthesis and activation of glucosinolates. In particular, her studies on plant specifier proteins gave new insights in the evolution and ecological functions the glucosinolate-myrosinase system. Her current research spans protein biochemistry, protein-protein interaction studies, regulatory networks and RNA-mediated regulation to exploit the well-studied biosynthetic pathway to glucosinolates as model system for studying complex regulatory mechanisms and their genetic bases in plants.

Corresponding author: Meike Burow, DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, C., Denmark, e-mail:

Received: 2013-11-27

Accepted: 2014-02-27

Published Online: 2014-03-01

Published in Print: 2014-05-01

Citation Information: Biological Chemistry, Volume 395, Issue 5, Pages 529–543, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0286.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Svend Roesen Madsen, Grit Kunert, Michael Reichelt, Jonathan Gershenzon, and Barbara Ann Halkier
Journal of Chemical Ecology, 2015, Volume 41, Number 11, Page 975
Lea M. Jensen, Henriette S. K. Jepsen, Barbara A. Halkier, Daniel J. Kliebenstein, and Meike Burow
Frontiers in Plant Science, 2015, Volume 6
Eun-Hye Gu, Mukhamad Su’udi, NaRae Han, Byounghoon Kwon, Sooyeon Lim, and Jongkee Kim
Horticulture, Environment, and Biotechnology, 2015, Volume 56, Number 2, Page 255
Benjamin Brachi, Christopher G. Meyer, Romain Villoutreix, Alexander Platt, Timothy C. Morton, Fabrice Roux, and Joy Bergelson
Proceedings of the National Academy of Sciences, 2015, Volume 112, Number 13, Page 4032
Felix Hirschmann, Florian Krause, and Jutta Papenbrock
Frontiers in Plant Science, 2014, Volume 5
Robert W. Reid, Cory R. Brouwer, Eric W. Jackson, and Mary Ann Lila
Trends in Plant Science, 2014, Volume 19, Number 8, Page 485

Comments (0)

Please log in or register to comment.
Log in