Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Wissenschaftlicher Beirat: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
Alle Formate und Preise
Weitere Optionen …
Band 395, Heft 5

Hefte

Atypical Rho GTPases RhoD and Rif integrate cytoskeletal dynamics and membrane trafficking

Pontus Aspenström
  • Korrespondenzautor
  • Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Nobels Väg 16, S-171 77 Stockholm, Sweden
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 13.03.2014 | DOI: https://doi.org/10.1515/hsz-2013-0296

Abstract

The Rho GTPases are essential regulators of basic cellular processes, including cell migration, cell contraction and cell division. Most studies still involve just the three canonical members, RhoA, Rac1 and Cdc42, although the Rho GTPases comprise at least 20 members. The aim of this review is to highlight some of the recent advances in our knowledge regarding the less-studied Rho members, with the focus on RhoD and Rif. The phenotypic alterations to cell behaviour that are triggered by RhoD and Rif suggest that they have unique impacts on cytoskeletal dynamics that distinguish them from the well-studied members of the Rho GTPases. In addition, RhoD has a role in the regulation of intracellular transport of vesicles. Taken together, the available data indicate that RhoD and Rif have functions as master regulators in the integration of cytoskeletal reorganisation and membrane trafficking.

Keywords: actin; endocytosis; Rho GTPases; RhoD; Rif

References

  • Aspenström, P., Fransson, Å., and Saras, J. (2004). The Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377, 327–337.Google Scholar

  • Aspenström, P., Ruusala, A., and Pacholsky, D. (2007). Taking the Rho GTPases to the next level: the cellular function of the atypical Rho GTPases. Exp. Cell Res. 313, 3673–3679.Google Scholar

  • Bailik, S. and Kimchi, A. (2006). The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem. 75, 189–210.Web of ScienceGoogle Scholar

  • Barrios-Rodiles, M., Brown, K.R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R.S., Shinjo, F., Liu, Y., Dembowy, J., Taylor, I.W., et al. (2005). High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625.Google Scholar

  • Boureux, A., Vignal, E., Faure, S., and Fort, P. (2007). Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol. Biol. Evol. 24, 203–216.Web of ScienceCrossrefGoogle Scholar

  • Brognard, J., Zhang, Y.-W., Puto, L.A., and Hunter, T. (2011). Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. Cancer Res. 71, 3152–3161.Google Scholar

  • Campellone, K.G., Webb, N.J., Znameroski, E.A., and Welch, M.D. (2008). WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161.Google Scholar

  • Chardin, P. (2006). Function and regulation of Rnd proteins. Nat. Rev. Mol. Cell Biol. 7, 54–62.CrossrefGoogle Scholar

  • Chavrier, P., Simins, K., and Zerial, M. (1992). The complexity of the Rab and Rho GTP-binding protein subfamilies revealed by a PCR cloning approach. Gene 112, 261–264.CrossrefGoogle Scholar

  • Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci STKE 250, RE13.Google Scholar

  • Cook, D.R., Rossman, K.L., and Der, C.J. (2013). Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene. DOI: 10.1038/onc.2013.362 [Epub ahead of print].CrossrefGoogle Scholar

  • Ellis, S. and Mellor, H. (2000). The novel Rho-family GTPase Rif regulates coordinated actin-based membrane rearrangements. Curr. Biol. 10, 1387–1390.CrossrefGoogle Scholar

  • Espinosa, E.J., Calero, M., Sridevi, K., and Pfeffer, S.R. (2009). RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 137, 938–948.Google Scholar

  • Fan, L., Pellegrin, S., Scott A., and Mellor, H. (2010). The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells. J. Cell Sci. 123, 1247–1252.Web of ScienceGoogle Scholar

  • Gad, A.K.B. and Aspenström, P. (2010). Rif proteins take to the RhoD: Rho GTPases at the crossroads of actin dynamics and membrane trafficking. Cell. Signal. 22, 183–189.Web of ScienceCrossrefGoogle Scholar

  • Gad, A.K.B., Nehru, V., Ruusala, A., and Aspenström, P. (2012). RhoD regulates cytoskeletal dynamics via the actin-nucleation-promoting factor WHAMM. Mol. Biol. Cell 23, 4807–4819.CrossrefGoogle Scholar

  • Garcia-Mata, R., Boulter, E., and Burridge, K. (2011). The ‘invisible hand’: regulation of RHO GTPases by RHO-GDIs. Nat. Rev. Mol. Cell Biol. 12, 493–504.CrossrefGoogle Scholar

  • Gasman, S., Kalaidzidis, Y., and Zerial, M. (2003). RhoD regulates endosome dynamics through Diaphanous-related formin and Src kinase. Nat. Cell Biol. 5, 195–204.CrossrefGoogle Scholar

  • Goggs, R., Savage, J.S., Mellor, H., and Poole, A.W. (2013). The small GTPase Rif is dispensable for platelet filopodia generation in mice. PLoS One. 8, e54663.Google Scholar

  • Goh, W.I., Sudhaharan, T., Lim, K.B., Sem, K.P., Lau, C.L., and Ahmed, S. (2011). Rif-mDia1 interaction is involved in filopodium formation independent of Cdc42 and Rac effectors. J. Biol. Chem. 286, 13681–13694.Google Scholar

  • Gorelik, R., Yang, C., Kameswaran, V., Dominguez, R., and Svitkina, T. (2011). Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol. Biol. Cell. 22, 189–201.CrossrefGoogle Scholar

  • Gouw, L.G., Reading, N.S., Jenson, S.D., Lim, M.S., and Elenitoba-Johnson, K.S. (2005). Expression of the Rho-family GTPase gene RHOF in lymphocyte subsets and malignant lymphomas. Br. J. Haematol. 129, 531–533.Google Scholar

  • Gozuacik, D. and Kimchi, A. (2006). DAPK protein family and cancer. Autophagy 2, 74–79.CrossrefGoogle Scholar

  • Gradilla, A.C. and Guerrero, I. (2013). Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res. 352, 59–66.Web of ScienceGoogle Scholar

  • Jaffe, A.B. and Hall, A. (2005). Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269.Web of ScienceCrossrefGoogle Scholar

  • Jaiswal, M., Fansa, E.K., Dvorsky, R., and Ahmadian, M.R. (2013). New insight into the molecular switch mechanism of human Rho family proteins: shifting a paradigm. Biol. Chem. 394, 89–95.Web of ScienceGoogle Scholar

  • Kawai, T., Matsumoto, M., Takeda, K., Sanjo, H., and Akira, S. (1998). ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol. Cell. Biol. 18, 1642–1651.CrossrefGoogle Scholar

  • Kögel, D., Plöttner, O., Landsberg, G., Christian, S., and Scheidtmann, K.H. (1998). Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene 17, 2645–2654.CrossrefGoogle Scholar

  • Koizumi, K., Takano, K., Kaneyasu, A., Watanabe-Takano, H., Tokuda, E., Abe, T., Watanabe, N., Takenawa, T., and Endo, T. (2012). RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C. Mol. Biol. Cell 23, 4647–4661.CrossrefGoogle Scholar

  • Kyrkou, A., Soufi, M., Bahtz, R., Ferguson, C., Bai, M., Parton, R.G., Hoffmann, I., Zerial, M., Fotsis, T., and Murphy, C. (2013). RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene 32, 1831–1842.Web of ScienceCrossrefGoogle Scholar

  • Murata-Hori, M., Fukata, Y., Ueda, K., Iwasaki, T., and Hosoya, H. (2001). HeLa ZIP kinase induces diphosphorylation of myosinII regulatory light chain and reorganization of actin filaments in nonmuscle cells. Oncogene 20, 8175–8183.CrossrefGoogle Scholar

  • Murphy, C., Saffrich, R., Grummt, M., Gournier, H., Rybin, V., Rubino, M., Auvinen, P., Lütcke, A., Parton, R.G., and Zerial, M. (1996). Endosome dynamics regulated by a Rho protein. Nature 384, 427–432.Google Scholar

  • Murphy, C., Saffrich, R., Olivo-Marin, J.C., Giner, A., Ansorge, W., Fotsis, T., and Zerial, M. (2001). Dual function of RhoD in vesicular movement and cell motility. Eur. J. Cell Biol. 80, 391–398.CrossrefGoogle Scholar

  • Nagano, T., Yoneda, T., Hatanaka, Y., Kubota, C., Murakami, F., and Sato, M. (2002). Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat. Cell Biol. 4, 495–501.Google Scholar

  • Nehru, V., Almeida, F.N., and Aspenström, P. (2013a). Interaction of RhoD and ZIP kinase modulates actin filament assembly and focal adhesion dynamics. Biochem. Biophys. Res. Commun. 433, 163–169.Web of ScienceGoogle Scholar

  • Nehru, V., Voytyuk, O., Lennartsson, J., and Aspenström, P. (2013b.) RhoD binds the Rab5 effector Rabankyrin-5 and has a role in trafficking of the platelet-derived growth factor receptor. Traffic 14, 1242–1254.CrossrefGoogle Scholar

  • Olson, M.F. and Sahai, E. (2009). The actin cytoskeleton in cancer cell motility. Clin. Exp. Metastasis 26, 273–287.CrossrefWeb of ScienceGoogle Scholar

  • Pellegrin, S. and Mellor, H. (2005). The Rho family GTPase Rif induces filopodia through mDia2. Curr. Biol. 15, 129–133.Google Scholar

  • Ridley, A.J. (2013). RhoA, RhoB and RhoC have different roles in cancer cell migration. J. Microsc. 251, 242–249.Web of ScienceGoogle Scholar

  • Rottner, K. and Stradal, T.E. (2011). Actin dynamics and turnover in cell motility. Curr. Opin. Cell Biol. 23, 569–578.Web of ScienceCrossrefGoogle Scholar

  • Sandilands, E., Brunton, V.G., and Frame, M.C. (2007). The membrane targeting and spatial activation of Src, Yes and Fyn is influenced by palmitoylation and distinct RhoB/RhoD endosome requirements. J. Cell Sci. 120, 2555–2564.Web of ScienceGoogle Scholar

  • Schnatwinkel, C., Christoforidis, S., Lindsay, M.R., Uttenweiler-Joseph, S., Wilm, M., Parton, R.G., and Zerial, M. (2004). The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol. 2, E261.CrossrefGoogle Scholar

  • Tcherkezian, J. and Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biol. Cell. 99, 67–86.CrossrefWeb of ScienceGoogle Scholar

  • Tong, Y., Chugha, P., Hota, P.K., Alviani, R.S., Li, M., Tempel, W., Shen, L., Park, H.W., and Buck, M. (2007). Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J. Biol. Chem. 282, 37215–37224.Google Scholar

  • Tsubikamoto, K., Matsumoto, K., Abe, H., Ishii, J., Amano, M., Kaibuchi, K., and Endo, T. (1999). Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 18, 2431–2440.CrossrefGoogle Scholar

  • Wennerberg, K. and Der, C.J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301–1312.Google Scholar

  • Zanata, S.M., Hovatta, I., Rohm, B., and Püschel, A.W. (2002). Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. J. Neurosci. 22, 471–477.Google Scholar

  • Zhou, A.X., Hartwig, J.H., and Akyürek, L.M. (2010). Filamins in cell signaling, transcription and organ development. Trends Cell Biol. 20, 113–123.Web of ScienceCrossrefGoogle Scholar

Artikelinformationen

Corresponding author: Pontus Aspenström, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, Nobels Väg 16, S-171 77 Stockholm, Sweden, e-mail:


Erhalten: 17.12.2013

Angenommen: 11.03.2014

Online erschienen: 13.03.2014

Erschienen im Druck: 01.05.2014


Quellenangabe: Biological Chemistry, Band 395, Heft 5, Seiten 477–484, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0296.

Zitat exportieren

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[1]
Khvaramze Shaverdashvili, Jennie Padlo, Daniel Weinblatt, Yang Jia, Wenpeng Jiang, Divya Rao, Dorottya Laczkó, Kelly A. Whelan, John P. Lynch, Amanda B. Muir, Jonathan P. Katz, and Claudia D. Andl
PLOS ONE, 2019, Jahrgang 14, Nummer 4, Seite e0215746
[2]
Ehsan Amin, Mamta Jaiswal, Urszula Derewenda, Katarina Reis, Kazem Nouri, Katja T. Koessmeier, Pontus Aspenström, Avril V. Somlyo, Radovan Dvorsky, and Mohammad R. Ahmadian
Journal of Biological Chemistry, 2016, Jahrgang 291, Nummer 39, Seite 20353
[3]
Romain Ferru-Clément, Fleur Fresquet, Caroline Norez, Thierry Métayé, Frédéric Becq, Alain Kitzis, Vincent Thoreau, and Julie G. Donaldson
PLOS ONE, 2015, Jahrgang 10, Nummer 3, Seite e0118943
[4]
Ahmet Saracaloglu, Seniz Demiryürek, Seydi Okumus, Serdar Oztuzcu, Ibrahim Bozgeyik, Erol Coskun, Umit Aksoy, Erdal Kaydu, Ibrahim Erbagci, Bulent Gürler, Belgin Alasehirli, and Abdullah T. Demiryürek
OMICS: A Journal of Integrative Biology, 2016, Jahrgang 20, Nummer 5, Seite 290

Kommentare (0)