Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 395, Issue 6

Issues

Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata

Anne-Kathrin Pöppel
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse, D-35394 Giessen, Germany
  • Institute for Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aline Koch
  • Institute for Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karl-Heinz Kogel
  • Institute for Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heiko Vogel
  • Max-Planck-Institute for Chemical Ecology, Department of Entomology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Kollewe
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse, D-35394 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jochen Wiesner
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse, D-35394 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Vilcinskas
  • Corresponding author
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse, D-35394 Giessen, Germany
  • Institute for Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-12 | DOI: https://doi.org/10.1515/hsz-2013-0263

Abstract

We report the identification, cloning, heterologous expression and functional characterization of a novel antifungal peptide named lucimycin from the common green bottle fly Lucilia sericata. The lucimycin cDNA was isolated from a library of genes induced during the innate immune response in L. sericata larvae, which are used as therapeutic maggots. The peptide comprises 77 amino acid residues with a molecular mass of 8.2 kDa and a pI of 6.6. It is predicted to contain a zinc-binding motif and to form a random coil, lacking β-sheets or other secondary structures. Lucimycin was active against fungi from the phyla Ascomycota, Basidiomycota and Zygomycota, in addition to the oomycete Phytophtora parasitica, but it was inactive against bacteria. A mutant version of lucimycin, lacking the four C-terminal amino acid residues, displayed 40-fold lower activity. The activity of lucimycin against a number of highly-destructive plant pathogens could be exploited to produce transgenic crops that are resistant against fungal diseases.

Keywords: antifungal peptides; crop protection; fungal pathogens; Lucilia sericata; lucimycin; wound-healing maggots

References

  • Aerts, A.M., Francois, I.E., Cammue, B.P., and Thevissen, K. (2008). The mode of antifungal action of plant, insect and human defensins. Cell. Mol. Life. Sci. 65, 2069–2079.Web of ScienceGoogle Scholar

  • Ali, G.S. and Reddy, A.S. (2000). Inhibition of fungal and bacterial plant pathogens by synthetic peptides: in vitro growth inhibition, interaction between peptides and inhibition of disease progression. Mol. Plant. Microbe. Interact. 13, 847–859.CrossrefPubMedGoogle Scholar

  • Altincicek, B. and Vilcinskas, A. (2007). Analysis of the immune-inducible transcriptome from microbial stress resistant, rat-tailed maggots of the drone fly Eristalis tenax. BMC Genomics 8, 326.Web of SciencePubMedGoogle Scholar

  • Altincicek, B. and Vilcinskas, A. (2009). Septic injury-inducible genes in medicinal maggots of the green blow fly Lucilia sericata. Insect Mol. Biol. 18, 119–125.Web of ScienceGoogle Scholar

  • Arvanitis, M., Glavis-Bloom, J., and Mylonakis, E. (2013). Invertebrate models of fungal infection. Biochim. Biophys. Acta. 1832, 1378–1383.Google Scholar

  • Bexfield, A., Nigam, Y., Thomas, S., and Ratcliffe, N.A. (2004). Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes Infect. 6, 1297–1304.Google Scholar

  • Cerovsky, V., Zdarek, J., Fucik, V., Monincova, L., Voburka, Z., and Bem, R. (2010). Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell. Mol. Life Sci. 67, 455–466.Web of ScienceGoogle Scholar

  • Cerovsky, V., Slaninova, J., Fucik, V., Monincova, L., Bednarova, L., Malon, P., and Stokrova, J. (2011). Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. Chembiochem. 12, 1352–1361.Web of ScienceGoogle Scholar

  • Chambers, L., Woodrow, S., Brown, A.P., Harris, P.D., Phillips, D., Hall, M., Church, J.C., and Pritchard, D.I. (2003). Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br. J. Dermatol. 148, 14–23.Google Scholar

  • Church, J.C. (1996). The traditional use of maggots in wound healing, and the development of larva therapy (biosurgery) in modern medicine. J. Altern. Complement. Med. 2, 525–527.CrossrefGoogle Scholar

  • Desalermos, A., Fuchs, B.B., and Mylonakis, E. (2012). Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS Pathog. 8, e1002451.Web of ScienceGoogle Scholar

  • Huberman, L., Gollop, N., Mumcuoglu, K.Y., Breuer, E., Bhusare, S.R., Shai, Y., and Galun, R. (2007). Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med. Vet. Entomol. 21, 127–131.Web of ScienceGoogle Scholar

  • Koch, A., Khalifa, W., Langen, G., Vilcinskas, A., Kogel, K.-H., and Imani, J. (2012). The antimicrobial peptide thanatin reduces fungal infections in Arabidopsis. J. Phytopathol. 160, 606–610.Web of ScienceGoogle Scholar

  • Kumar, R., Chadha, S., Saraswat, D., Bajwa, J.S., Li, R.A., Conti, H.R., and Edgerton, M. (2011). Histatin 5 uptake by Candida albicans utilizes polyamine transporters Dur3 and Dur31 proteins. J. Biol. Chem. 286, 43748–43758.Google Scholar

  • Langen, G., Imani, J., Altincicek, B., Kieseritzky, G., Kogel, K.H., and Vilcinskas, A. (2006). Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol. Chem. 387, 549–557.Google Scholar

  • Louis, B. and Roy, P. (2010). Engineered pathogenesis related and antimicrobial proteins weaponry against Phytopthora infestans in potato plant. Biotechnol. Mol. Biol. Rev. 5, 61–66.Google Scholar

  • Mukherjee, K., Hain, T., Fischer, R., Chakraborty, T., and Vilcinskas, A. (2013). Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 4, 324–332.Web of SciencePubMedGoogle Scholar

  • Mumcuoglu, K.Y., Ingber, A., Gilead, L., Stessman, J., Friedmann, R., Schulman, H., Bichucher, H., Ioffe-Uspensky, I., Miller, J., Galun, R., et al. (1999). Maggot therapy for the treatment of intractable wounds. Internat. J. Dermatol. 38, 623–627.Google Scholar

  • Nigam, Y., Bexfield, A., Thomas, S., and Ratcliffe, N.A. (2006a). Maggot therapy: the science and implication for cam part I – history and bacterial resistance. Evid. Based complement. Alternat. Med. 3, 223–227.Google Scholar

  • Nigam, Y., Bexfield, A., Thomas, S., and Ratcliffe, N.A. (2006b). Maggot therapy: the science and implication for cam part II – maggots combat infection. Evid. Based complement. Alternat. Med. 3, 303–308.Google Scholar

  • Rahnamaeian, M., Langen, G., Imani, J., Khalifa, W., Altincicek, B., von Wettstein, D., Kogel, K.H., and Vilcinskas, A. (2009). Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J. Exp. Bot. 60, 4105–4114.Web of ScienceGoogle Scholar

  • Ratcliffe, N.A., Mello, C.B., Garcia, E.S., Butt, T.M., and Azambuja, P. (2011). Insect natural products and processes: new treatments for human disease. Insect Biochem. Mol. Biol. 41, 747–769.Web of ScienceGoogle Scholar

  • Schuhmann, B., Seitz, V., Vilcinskas, A., and Podsiadlowski, L. (2003). Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53, 125–133.Google Scholar

  • Seitz, V., Clermont, A., Wedde, M., Hummel, M., Vilcinskas, A., Schlatterer, K., and Podsiadlowski, L. (2003). Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev. Comp. Immunol. 27, 207–215.Google Scholar

  • Thomas, S., Jones, M., Shutler, S., and Jones, S. (1996). Using larvae in modern wound management. J. Wound Care 5, 60–69.Google Scholar

  • Vilcinskas, A. (2010). Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence 1, 206–214.Google Scholar

  • Vilcinskas, A. (2011a). Anti-infective therapeutics from the lepidopteran model host Galleria mellonella. Curr. Pharm. Des. 17, 1240–1245.Google Scholar

  • Vilcinskas, A. (2011b). From traditional maggot therapy to modern biosurgery. In: Insect Biotechnology, A. Vilcinskas, ed. (Dordrecht, Netherlands: Springer), pp. 67–75.Google Scholar

  • Vilcinskas, A. (2013). Evolutionary plasticity of insect immunity. J. Insect Physiol. 59, 123–129.Web of ScienceGoogle Scholar

  • Vilcinskas, A. and Gross, J. (2005). Drugs from bugs: the use of insects as a valuable source of transgenes with potential in modern plant protection strategies. J. Pest Sci. 78, 187–191.Google Scholar

  • Vogel, H., Altincicek, B., Glockner, G., and Vilcinskas, A. (2011). A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12, 308.Web of SciencePubMedCrossrefGoogle Scholar

  • Wang, Y., Li, D.D., Jiang, Y.Y., and Mylonakis, E. (2013). Utility of insects for studying human pathogens and evaluating new antimicrobial agents. Adv. Biochem. Eng. Biotechnol. 135, 1–25.Google Scholar

  • Wiesner, J. and Vilcinskas, A. (2010). Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1, 440–464.Google Scholar

About the article

Corresponding author: Andreas Vilcinskas, Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse, D-35394 Giessen, Germany; and Institute for Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany, e-mail:


Received: 2013-10-05

Accepted: 2014-03-11

Published Online: 2014-03-12

Published in Print: 2014-06-01


Citation Information: Biological Chemistry, Volume 395, Issue 6, Pages 649–656, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0263.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anne-Kathrin Pöppel, Heiko Vogel, Jochen Wiesner, and Andreas Vilcinskas
Antimicrobial Agents and Chemotherapy, 2015, Volume 59, Number 5, Page 2508
[2]
Rose Cooper and Klaus Kirketerp-Møller
Journal of Wound Care, 2018, Volume 27, Number 6, Page 355
[3]
Litao Yan, Jin Chu, Mingshu Li, Xianfeng Wang, Junwei Zong, Xueyang Zhang, Mingzhi Song, and Shouyu Wang
Evidence-Based Complementary and Alternative Medicine, 2018, Volume 2018, Page 1
[4]
Mayra Juliana Laverde-Paz, María Clara Echeverry, Manuel Alfonso Patarroyo, and Felio Jesús Bello
Acta Tropica, 2017
[5]
Birgit A. Rumpold, Michael Klocke, and Oliver Schlüter
Regional Environmental Change, 2017, Volume 17, Number 5, Page 1445
[6]
Andre Baumann, Marisa Skaljac, Rüdiger Lehmann, Andreas Vilcinskas, and Zdenӗk Franta
Insect Biochemistry and Molecular Biology, 2017, Volume 83, Page 44
[7]
Christine Schreiber, Hagen Müller, Oliver Birrenbach, Moritz Klein, Doreen Heerd, Tobias Weidner, Denise Salzig, and Peter Czermak
Microbial Cell Factories, 2017, Volume 16, Number 1
[8]
Andre Baumann, Rüdiger Lehmann, Annika Beckert, Andreas Vilcinskas, Zdeněk Franta, and Ramona Natacha PENA i SUBIRÀ
PLOS ONE, 2015, Volume 10, Number 8, Page e0135093
[9]
Alireza Sanei-Dehkordi, Ali Khamesipour, Kamran Akbarzadeh, Amir Ahmad Akhavan, Akram Mir Amin Mohammadi, Younes Mohammadi, Yavar Rassi, Mohammad Ali Oshaghi, Zahra Alebrahim, Seyed Ebrahim Eskandari, and Javad Rafinejad
Experimental Parasitology, 2016, Volume 170, Page 59
[10]
M El Bassiony Ghada and G Stoffolano Jr John
African Journal of Microbiology Research, 2016, Volume 10, Number 27, Page 1036
[11]
Eleftherios Mylonakis, Lars Podsiadlowski, Maged Muhammed, and Andreas Vilcinskas
Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, Volume 371, Number 1695, Page 20150290
[12]
Zdeněk Franta, Heiko Vogel, Rüdiger Lehmann, Oliver Rupp, Alexander Goesmann, and Andreas Vilcinskas
BioMed Research International, 2016, Volume 2016, Page 1
[13]
Clare A. Anstead, Philip Batterham, Pasi K. Korhonen, Neil D. Young, Ross S. Hall, Vernon M. Bowles, Stephen Richards, Maxwell J. Scott, and Robin B. Gasser
Biotechnology Advances, 2016, Volume 34, Number 5, Page 605
[14]
Anne-Kathrin Pöppel, Mareike Kahl, Andre Baumann, Jochen Wiesner, Anke Gökçen, Annika Beckert, Klaus T. Preissner, Andreas Vilcinskas, and Zdeněk Franta
Insect Biochemistry and Molecular Biology, 2016, Volume 70, Page 138
[15]
Mohammad Rahnamaeian and Andreas Vilcinskas
Applied Microbiology and Biotechnology, 2015, Volume 99, Number 21, Page 8847
[16]
David I Pritchard, Václav Čeřovský, Yamni Nigam, Samantha F Pickles, Gwendolyn Cazander, Peter H Nibbering, Anke Bültemann, and Wilhelm Jung
International Wound Journal, 2016, Volume 13, Number 4, Page 475
[17]
Rhys Evans, Ed Dudley, and Yamni Nigam
Wound Repair and Regeneration, 2015, Volume 23, Number 3, Page 361
[18]
Norman Arthur Ratcliffe, Cecilia Stahl Vieira, Paloma Martins Mendonça, Rebecca Leal Caetano, Margareth Maria de Carvalho Queiroz, Eloi Souza Garcia, Cicero Brasileiro Mello, and Patricia Azambuja
Acta Tropica, 2015, Volume 147, Page 6

Comments (0)

Please log in or register to comment.
Log in