Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 8, 2014

Influence of the polypeptide environment next to amyloidogenic peptides on fibril formation

  • Steffen Damm

    Steffen Damm studied biochemistry at the Martin-Luther-University Halle-Wittenberg and the University of Aberdeen. He received his diploma degree in 2012. He works as a PhD student in the Department of Technical Biochemistry at the Martin-Luther-University Halle-Wittenberg under the supervision of Elisabeth Schwarz. His research interest is the analysis of poly-alanine-induced fibril formation reactions that are modulated by the stability of a flanking folded domain.

    and Elisabeth Schwarz

    Elisabeth Schwarz studied biology at the University of Regensburg. She obtained her PhD degree from the Ludwig-Maximilians-University in Munich. After postdoctoral research stays in Norwich, Hamburg, and Munich, she moved to the Martin-Luther-University Halle-Wittenberg, where she received the venia legendi in biochemistry. Dr Schwarz is interested in human growth factors for therapy and mutation-caused protein misfolding.

    EMAIL logo
From the journal Biological Chemistry

Abstract

Alternative folding or fibril formation of proteins is associated with many diseases. Although uncertainty remains for many diseases as to whether the fibrils themselves constitute the main pathogenicity factor, the biophysics or molecular steps leading to fibrils cannot easily be reduced to a common denominator. To date, it is known that fibrils can form (i) upon aberrant (over-)production or false processing, (ii) upon infection with prions that act as seeds and induce unfolding of a thus far native protein – as has been shockingly experienced during the bovine spongiform encephalopathy episode, (iii) when mutations are present that increase the propensity of an otherwise stable protein to aggregate, or (iv) when mutation decreases the overall stability of an individual protein. This review intends to highlight some of the biochemical and biophysical mechanisms that favor fibril formation. Special emphasis is given on the relevance of the polypeptide environment of amyloidogenic segments and the currently discussed driving forces of fibril formation.


Corresponding author: Elisabeth Schwarz, Department for Technical Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse3, D-06120 Halle, Germany, e-mail:

About the authors

Steffen Damm

Steffen Damm studied biochemistry at the Martin-Luther-University Halle-Wittenberg and the University of Aberdeen. He received his diploma degree in 2012. He works as a PhD student in the Department of Technical Biochemistry at the Martin-Luther-University Halle-Wittenberg under the supervision of Elisabeth Schwarz. His research interest is the analysis of poly-alanine-induced fibril formation reactions that are modulated by the stability of a flanking folded domain.

Elisabeth Schwarz

Elisabeth Schwarz studied biology at the University of Regensburg. She obtained her PhD degree from the Ludwig-Maximilians-University in Munich. After postdoctoral research stays in Norwich, Hamburg, and Munich, she moved to the Martin-Luther-University Halle-Wittenberg, where she received the venia legendi in biochemistry. Dr Schwarz is interested in human growth factors for therapy and mutation-caused protein misfolding.

Acknowledgments

We thank the DFG for funding via the GRK1026.

References

Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W.H., Castillo, P.E., Shinsky, N., Verdugo, J.M., Armanini, M., Ryan, A., et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.10.1016/S0896-6273(00)80886-7Search in Google Scholar

Almeida, B., Fernandes, S., Abreu, I.A., and Macedo-Ribeiro, S. (2013). Trinucleotide repeats: a structural perspective. Front. Neurol. 4, 76.10.3389/fneur.2013.00076Search in Google Scholar PubMed PubMed Central

Anderson, J.P., Walker, D.E., Goldstein, J.M., de Laat, R., Banducci, K., Caccavello, R.J., Barbour, R., Huang, J., Kling, K., Lee, M., et al. (2006). Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 281, 29739–29752.10.1074/jbc.M600933200Search in Google Scholar PubMed

Appel-Cresswell, S., Vilarino-Guell, C., Encarnacion, M., Sherman, H., Yu, I., Shah, B., Weir, D., Thompson, C., Szu-Tu, C., Trinh, J., et al. (2013). Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord. 28, 811–813.10.1002/mds.25421Search in Google Scholar PubMed

Baxa, U., Taylor, K.L., Wall, J.S., Simon, M.N., Cheng, N., Wickner, R.B., and Steven, A.C. (2003). Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J. Biol. Chem. 278, 43717–43727.10.1074/jbc.M306004200Search in Google Scholar PubMed

Blancas-Mejia, L.M. and Ramirez-Alvarado, M. (2013). Systemic amyloidoses. Annu Rev Biochem. 82, 745–774.10.1146/annurev-biochem-072611-130030Search in Google Scholar PubMed PubMed Central

Booth, D.R., Sunde, M., Bellotti, V., Robinson, C.V., Hutchinson, W.L., Fraser, P.E., Hawkins, P.N., Dobson, C.M., Radford, S.E., Blake, C.C., et al. (1997). Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793.10.1038/385787a0Search in Google Scholar PubMed

Bousset, L., Bonnefoy, J., Sourigues, Y., Wien, F., and Melki, R. (2010). Structure and assembly properties of the N-terminal domain of the prion Ure2p in isolation and in its natural context. PLoS One 5, e9760.10.1371/journal.pone.0009760Search in Google Scholar PubMed PubMed Central

Brais, B., Bouchard, J.P., Xie, Y.G., Rochefort, D.L., Chretien, N., Tome, F.M., Lafreniere, R.G., Rommens, J.M., Uyama, E., Nohira, O., et al. (1998). Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet. 18, 164–167.10.1038/ng0298-164Search in Google Scholar PubMed

Burre, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R., and Sudhof, T.C. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667.10.1126/science.1195227Search in Google Scholar PubMed PubMed Central

Buttstedt, A., Winter, R., Sackewitz, M., Hause, G., Schmid, F.X., and Schwarz, E. (2010). Influence of the stability of a fused protein and its distance to the amyloidogenic segment on fibril formation. PLoS One 5, e15436.10.1371/journal.pone.0015436Search in Google Scholar PubMed PubMed Central

Buttstedt, A., Wostradowski, T., Ihling, C., Hause, G., Sinz, A., and Schwarz, E. (2013). Different morphology of amyloid fibrils originating from agitated and non-agitated conditions. Amyloid 20, 86–92.10.3109/13506129.2013.784962Search in Google Scholar PubMed

Calado, A., Tome, F.M., Brais, B., Rouleau, G.A., Kuhn, U., Wahle, E., and Carmo-Fonseca, M. (2000). Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum. Mol. Genet. 9, 2321–2328.10.1093/oxfordjournals.hmg.a018924Search in Google Scholar PubMed

Campioni, S., Carret, G., Jordens, S., Nicoud, L., Mezzenga, R., and Riek, R. (2014). The presence of an air-water interface affects formation and elongation of alpha-synuclein fibrils. J. Am. Chem. Soc. 136, 2866–2875.10.1021/ja412105tSearch in Google Scholar PubMed

Cervenakova, L., Goldfarb, L.G., Garruto, R., Lee, H.S., Gajdusek, D.C., and Brown, P. (1998). Phenotype-genotype studies in kuru: implications for new variant Creutzfeldt-Jakob disease. Proc. Natl. Acad. Sci. USA 95, 13239–13241.10.1073/pnas.95.22.13239Search in Google Scholar PubMed PubMed Central

Chiba, T., Hagihara, Y., Higurashi, T., Hasegawa, K., Naiki, H., and Goto, Y. (2003). Amyloid fibril formation in the context of full-length protein: effects of proline mutations on the amyloid fibril formation of beta2-microglobulin. J. Biol. Chem. 278, 47016–47024.10.1074/jbc.M304473200Search in Google Scholar PubMed

Cho, M.K., Nodet, G., Kim, H.Y., Jensen, M.R., Bernado, P., Fernandez, C.O., Becker, S., and Blackledge, M. (2009). Structural characterization of alpha-synuclein in an aggregation prone state. Protein Sci. 18, 1840–1846.10.1002/pro.194Search in Google Scholar PubMed PubMed Central

Chong, S.H., Yim, J., and Ham, S. (2013). Structural heterogeneity in familial Alzheimer’s disease mutants of amyloid-beta peptides. Mol. Biosyst. 9, 997–1003.10.1039/c2mb25457cSearch in Google Scholar PubMed

Conway, K.A., Harper, J.D., and Lansbury, P.T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320.10.1038/3311Search in Google Scholar PubMed

Coppus, A.M., Schuur, M., Vergeer, J., Janssens, A.C., Oostra, B.A., Verbeek, M.M., and van Duijn, C.M. (2012). Plasma beta amyloid and the risk of Alzheimer’s disease in Down syndrome. Neurobiol. Aging 33, 1988–1994.10.1016/j.neurobiolaging.2011.08.007Search in Google Scholar PubMed

Coustou, V., Deleu, C., Saupe, S., and Begueret, J. (1997). The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl. Acad. Sci. USA 94, 9773–9778.10.1073/pnas.94.18.9773Search in Google Scholar

De Franceschi, G., Frare, E., Pivato, M., Relini, A., Penco, A., Greggio, E., Bubacco, L., Fontana, A., and de Laureto, P.P. (2011). Structural and morphological characterization of aggregated species of {alpha}-synuclein induced by docosahexaenoic acid. J. Biol. Chem. 286, 22262–22274.10.1074/jbc.M110.202937Search in Google Scholar

Deleersnijder, A., Gerard, M., Debyser, Z., and Baekelandt, V. (2013). The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol. Med. 19, 368–377.Search in Google Scholar

Donne, D.G., Viles, J.H., Groth, D., Mehlhorn, I., James, T.L., Cohen, F.E., Prusiner, S.B., Wright, P.E., and Dyson, H.J. (1997). Structure of the recombinant full-length hamster prion protein PrP(29–231): the N terminus is highly flexible. Proc. Natl. Acad. Sci. USA 94, 13452–13457.10.1073/pnas.94.25.13452Search in Google Scholar

Dutta, A., Chen, S., and Surewicz, W.K. (2013). The effect of beta2-alpha2 loop mutation on amyloidogenic properties of the prion protein. FEBS Lett. 587, 2918–2923.10.1016/j.febslet.2013.07.023Search in Google Scholar

Fandrich, M. and Dobson, C.M. (2002). The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J. 21, 5682–5690.10.1093/emboj/cdf573Search in Google Scholar

Forood, B., Perez-Paya, E., Houghten, R.A., and Blondelle, S.E. (1995). Formation of an extremely stable polyalanine beta-sheet macromolecule. Biochem. Biophys. Res. Commun. 211, 7–13.10.1006/bbrc.1995.1770Search in Google Scholar

Gessel, M.M., Bernstein, S., Kemper, M., Teplow, D.B., and Bowers, M.T. (2012). Familial Alzheimer’s disease mutations differentially alter amyloid beta-protein oligomerization. ACS Chem. Neurosci. 3, 909–918.10.1021/cn300050dSearch in Google Scholar

Goldfarb, L.G., Brown, P., McCombie, W.R., Goldgaber, D., Swergold, G.D., Wills, P.R., Cervenakova, L., Baron, H., Gibbs, C.J. Jr., and Gajdusek, D.C. (1991). Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc. Natl. Acad. Sci. USA 88, 10926–10930.10.1073/pnas.88.23.10926Search in Google Scholar

Graumann, P. and Marahiel, M.A. (1994). The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides. FEBS Lett. 338, 157–160.10.1016/0014-5793(94)80355-2Search in Google Scholar

Gu, X., Greiner, E.R., Mishra, R., Kodali, R., Osmand, A., Finkbeiner, S., Steffan, J.S., Thompson, L.M., Wetzel, R., and Yang, X.W. (2009). Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 64, 828–840.10.1016/j.neuron.2009.11.020Search in Google Scholar PubMed PubMed Central

Harjes, P. and Wanker, E.E. (2003). The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci. 28, 425–433.10.1016/S0968-0004(03)00168-3Search in Google Scholar

Head, M.W., Knight, R., Zeidler, M., Yull, H., Barlow, A., and Ironside, J.W. (2009). A case of protease sensitive prionopathy in a patient in the UK. Neuropathol. Appl. Neurobiol. 35, 628–632.10.1111/j.1365-2990.2009.01040.xSearch in Google Scholar PubMed

Heise, H., Celej, M.S., Becker, S., Riedel, D., Pelah, A., Kumar, A., Jovin, T.M., and Baldus, M. (2008). Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant alpha-synuclein. J. Mol. Biol. 380, 444–450.10.1016/j.jmb.2008.05.026Search in Google Scholar PubMed

Helmus, J.J., Surewicz, K., Nadaud, P.S., Surewicz, W.K., and Jaroniec, C.P. (2008). Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proc. Natl. Acad. Sci. USA 105, 6284–6289.10.1073/pnas.0711716105Search in Google Scholar PubMed PubMed Central

Hurle, M.R., Helms, L.R., Li, L., Chan, W., and Wetzel, R. (1994). A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc. Natl. Acad. Sci. USA 91, 5446–5450.10.1073/pnas.91.12.5446Search in Google Scholar PubMed PubMed Central

Kiely, A.P., Asi, Y.T., Kara, E., Limousin, P., Ling, H., Lewis, P., Proukakis, C., Quinn, N., Lees, A.J., Hardy, J., et al. (2013). alpha-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 125, 753–769.Search in Google Scholar

Krzewska, J., Tanaka, M., Burston, S.G., and Melki, R. (2007). Biochemical and functional analysis of the assembly of full-length Sup35p and its prion-forming domain. J. Biol. Chem. 282, 1679–1686.10.1074/jbc.M608110200Search in Google Scholar PubMed

Labbadia, J. and Morimoto, R.I. (2013). Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 38, 378–385.10.1016/j.tibs.2013.05.003Search in Google Scholar PubMed PubMed Central

Larsen, K.E., Schmitz, Y., Troyer, M.D., Mosharov, E., Dietrich, P., Quazi, A.Z., Savalle, M., Nemani, V., Chaudhry, F.A., Edwards, R.H., et al. (2006). Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J. Neurosci. 26, 11915–11922.10.1523/JNEUROSCI.3821-06.2006Search in Google Scholar PubMed PubMed Central

Lee, H.S., Brown, P., Cervenakova, L., Garruto, R.M., Alpers, M.P., Gajdusek, D.C., and Goldfarb, L.G. (2001). Increased susceptibility to Kuru of carriers of the PRNP 129 methionine/methionine genotype. J. Infect. Dis. 183, 192–196.10.1086/317935Search in Google Scholar PubMed

Lemkau, L.R., Comellas, G., Lee, S.W., Rikardsen, L.K., Woods, W.S., George, J.M., and Rienstra, C.M. (2013). Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson’s disease associated mutations A53T and E46K. PLoS One 8, e49750.10.1371/journal.pone.0049750Search in Google Scholar PubMed PubMed Central

Li, J., Uversky, V.N., and Fink, A.L. (2001). Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40, 11604–11613.10.1021/bi010616gSearch in Google Scholar PubMed

Li, L.B., Yu, Z., Teng, X., and Bonini, N.M. (2008). RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111.10.1038/nature06909Search in Google Scholar PubMed PubMed Central

Lodderstedt, G., Hess, S., Hause, G., Scheuermann, T., Scheibel, T., and Schwarz, E. (2007). Effect of oculopharyngeal muscular dystrophy-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1. FEBS J. 274, 346–355.10.1111/j.1742-4658.2006.05595.xSearch in Google Scholar PubMed

Lokappa, S.B. and Ulmer, T.S. (2011). Alpha-synuclein populates both elongated and broken helix states on small unilamellar vesicles. J. Biol. Chem. 286, 21450–21457.10.1074/jbc.M111.224055Search in Google Scholar PubMed PubMed Central

Macchi, F., Hoffmann, S.V., Carlsen, M., Vad, B., Imparato, A., Rischel, C., and Otzen, D.E. (2011). Mechanical stress affects glucagon fibrillation kinetics and fibril structure. Langmuir 27, 12539–12549.10.1021/la202125cSearch in Google Scholar PubMed

Mayeux, R., Honig, L.S., Tang, M.X., Manly, J., Stern, Y., Schupf, N., and Mehta, P.D. (2003). Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 61, 1185–1190.10.1212/01.WNL.0000091890.32140.8FSearch in Google Scholar

Mead, S., Whitfield, J., Poulter, M., Shah, P., Uphill, J., Campbell, T., Al-Dujaily, H., Hummerich, H., Beck, J., Mein, C.A., et al. (2009). A novel protective prion protein variant that colocalizes with kuru exposure. N. Engl. J. Med. 361, 2056–2065.10.1056/NEJMoa0809716Search in Google Scholar PubMed

Miller, J.S., Kennedy, R.J., and Kemp, D.S. (2001). Short, solubilized polyalanines are conformational chameleons: exceptionally helical if N- and C-capped with helix stabilizers, weakly to moderately helical if capped with rigid spacers. Biochemistry 40, 305–309.10.1021/bi0019500Search in Google Scholar PubMed

Moore, R.A., Herzog, C., Errett, J., Kocisko, D.A., Arnold, K.M., Hayes, S.F., and Priola, S.A. (2006). Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation. Protein Sci. 15, 609–619.10.1110/ps.051822606Search in Google Scholar PubMed PubMed Central

Nguyen, H.D. and Hall, C.K. (2005). Kinetics of fibril formation by polyalanine peptides. J. Biol. Chem. 280, 9074–9082.10.1074/jbc.M407338200Search in Google Scholar PubMed

Ono, K., Condron, M.M., and Teplow, D.B. (2010). Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid beta-protein assembly and toxicity. J. Biol. Chem. 285, 23186–23197.10.1074/jbc.M109.086496Search in Google Scholar

Paleologou, K.E., Schmid, A.W., Rospigliosi, C.C., Kim, H.Y., Lamberto, G.R., Fredenburg, R.A., Lansbury, P.T. Jr., Fernandez, C.O., Eliezer, D., Zweckstetter, M., et al. (2008). Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J. Biol. Chem. 283, 16895–16905.10.1074/jbc.M800747200Search in Google Scholar

Paleologou, K.E., Oueslati, A., Shakked, G., Rospigliosi, C.C., Kim, H.Y., Lamberto, G.R., Fernandez, C.O., Schmid, A., Chegini, F., Gai, W.P., et al. (2010). Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J. Neurosci. 30, 3184–3198.10.1523/JNEUROSCI.5922-09.2010Search in Google Scholar

Petkova, A.T., Yau, W.M., and Tycko, R. (2006). Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45, 498–512.10.1021/bi051952qSearch in Google Scholar

Poshusta, T.L., Katoh, N., Gertz, M.A., Dispenzieri, A., and Ramirez-Alvarado, M. (2013). Thermal stability threshold for amyloid formation in light chain amyloidosis. Int. J. Mol. Sci. 14, 22604–22617.10.3390/ijms141122604Search in Google Scholar

Qiang, W., Kelley, K., and Tycko, R. (2013). Polymorph-specific kinetics and thermodynamics of beta-amyloid fibril growth. J. Am. Chem. Soc. 135, 6860–6871.10.1021/ja311963fSearch in Google Scholar

Rennella, E., Cutuil, T., Schanda, P., Ayala, I., Gabel, F., Forge, V., Corazza, A., Esposito, G., and Brutscher, B. (2013). Oligomeric states along the folding pathways of beta2-microglobulin: kinetics, thermodynamics, and structure. J. Mol. Biol. 425, 2722–2736.10.1016/j.jmb.2013.04.028Search in Google Scholar

Riek, R., Hornemann, S., Wider, G., Glockshuber, R., and Wuthrich, K. (1997). NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett. 413, 282–288.10.1016/S0014-5793(97)00920-4Search in Google Scholar

Ritter, C., Maddelein, M.L., Siemer, A.B., Luhrs, T., Ernst, M., Meier, B.H., Saupe, S.J., and Riek, R. (2005). Correlation of structural elements and infectivity of the HET-s prion. Nature 435, 844–848.10.1038/nature03793Search in Google Scholar PubMed PubMed Central

Robertson, A.L., Bate, M.A., Buckle, A.M., and Bottomley, S.P. (2011). The rate of polyQ-mediated aggregation is dramatically affected by the number and location of surrounding domains. J. Mol. Biol. 413, 879–887.10.1016/j.jmb.2011.09.014Search in Google Scholar PubMed

Sackewitz, M., Scheidt, H.A., Lodderstedt, G., Schierhorn, A., Schwarz, E., and Huster, D. (2008a). Structural and dynamical characterization of fibrils from a disease-associated alanine expansion domain using proteolysis and solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 7172–7173.10.1021/ja800120sSearch in Google Scholar

Sackewitz, M., von Einem, S., Hause, G., Wunderlich, M., Schmid, F.X., and Schwarz, E. (2008b). A folded and functional protein domain in an amyloid-like fibril. Protein Sci. 17, 1044–1054.10.1110/ps.073276308Search in Google Scholar

Saunders, H.M., Gilis, D., Rooman, M., Dehouck, Y., Robertson, A.L., and Bottomley, S.P. (2011). Flanking domain stability modulates the aggregation kinetics of a polyglutamine disease protein. Protein Sci. 20, 1675–1681.10.1002/pro.698Search in Google Scholar

Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H., and Wanker, E.E. (1997). Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558.10.1016/S0092-8674(00)80514-0Search in Google Scholar

Scheuermann, T., Schulz, B., Blume, A., Wahle, E., Rudolph, R., and Schwarz, E. (2003). Trinucleotide expansions leading to an extended poly-L-alanine segment in the poly (A) binding protein PABPN1 cause fibril formation. Protein Sci. 12, 2685–2692.10.1110/ps.03214703Search in Google Scholar PubMed PubMed Central

Schindelin, H., Marahiel, M.A., and Heinemann, U. (1993). Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364, 164–168.10.1038/364164a0Search in Google Scholar PubMed

Schindler, T., Herrler, M., Marahiel, M.A., and Schmid, F.X. (1995). Extremely rapid protein folding in the absence of intermediates. Nat. Struct. Biol. 2, 663–673.10.1038/nsb0895-663Search in Google Scholar PubMed

Schindler, T., Graumann, P.L., Perl, D., Ma, S., Schmid, F.X., and Marahiel, M.A. (1999). The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J. Biol. Chem. 274, 3407–3413.10.1074/jbc.274.6.3407Search in Google Scholar PubMed

Schnuchel, A., Wiltscheck, R., Czisch, M., Herrler, M., Willimsky, G., Graumann, P., Marahiel, M.A., and Holak, T.A. (1993). Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature 364, 169–171.10.1038/364169a0Search in Google Scholar PubMed

Seuring, C., Greenwald, J., Wasmer, C., Wepf, R., Saupe, S.J., Meier, B.H., and Riek, R. (2012). The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol. 10, e1001451.10.1371/journal.pbio.1001451Search in Google Scholar PubMed PubMed Central

Sigurdson, C.J., Nilsson, K.P., Hornemann, S., Heikenwalder, M., Manco, G., Schwarz, P., Ott, D., Rulicke, T., Liberski, P.P., Julius, C., et al. (2009). De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc. Natl. Acad. Sci. USA 106, 304–309.10.1073/pnas.0810680105Search in Google Scholar

Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003). alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841.10.1126/science.1090278Search in Google Scholar

Sivanandam, V.N., Jayaraman, M., Hoop, C.L., Kodali, R., Wetzel, R., and van der Wel, P.C. (2011). The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils. J. Am. Chem. Soc. 133, 4558–4566.10.1021/ja110715fSearch in Google Scholar

Souillac, P.O., Uversky, V.N., Millett, I.S., Khurana, R., Doniach, S., and Fink, A.L. (2002a). Effect of association state and conformational stability on the kinetics of immunoglobulin light chain amyloid fibril formation at physiological pH. J. Biol. Chem. 277, 12657–12665.10.1074/jbc.M109230200Search in Google Scholar

Souillac, P.O., Uversky, V.N., Millett, I.S., Khurana, R., Doniach, S., and Fink, A.L. (2002b). Elucidation of the molecular mechanism during the early events in immunoglobulin light chain amyloid fibrillation. Evidence for an off-pathway oligomer at acidic pH. J. Biol. Chem. 277, 12666–12679.10.1074/jbc.M109229200Search in Google Scholar

Sziegat, F., Wirmer-Bartoschek, J., and Schwalbe, H. (2011). Characteristics of human lysozyme and its disease-related mutants in their unfolded states. Angew. Chem. Int. Ed. Engl. 50, 5514–5518.10.1002/anie.201008040Search in Google Scholar

Tome, F.M., Chateau, D., Helbling-Leclerc, A., and Fardeau, M. (1997). Morphological changes in muscle fibers in oculopharyngeal muscular dystrophy. Neuromuscul. Disord. 7, S63–69.10.1016/S0960-8966(97)00085-0Search in Google Scholar

Toyama, B.H., Kelly, M.J., Gross, J.D., and Weissman, J.S. (2007). The structural basis of yeast prion strain variants. Nature 449, 233–237.10.1038/nature06108Search in Google Scholar PubMed

Tycko, R. and Wickner, R.B. (2013). Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc. Chem. Res. 46, 1487–1496.10.1021/ar300282rSearch in Google Scholar PubMed PubMed Central

Van Melckebeke, H., Wasmer, C., Lange, A., Ab, E., Loquet, A., Bockmann, A., and Meier, B.H. (2010). Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J. Am. Chem. Soc. 132, 13765–13775.10.1021/ja104213jSearch in Google Scholar PubMed

Wickner, R.B. (1997). A new prion controls fungal cell fusion incompatibility. Proc. Natl. Acad. Sci. USA 94, 10012–10014.10.1073/pnas.94.19.10012Search in Google Scholar PubMed PubMed Central

Winter, R., Kuhn, U., Hause, G., and Schwarz, E. (2012). Polyalanine-independent conformational conversion of nuclear poly(A)-binding protein 1 (PABPN1). J. Biol. Chem. 287, 22662–22671.10.1074/jbc.M112.362327Search in Google Scholar PubMed PubMed Central

Winter, R., Liebold, J., and Schwarz, E. (2013). The unresolved puzzle why alanine extensions cause disease. Biol. Chem. 394, 951–963.10.1515/hsz-2013-0112Search in Google Scholar PubMed

Wisniewski, K.E., Dalton, A.J., McLachlan, C., Wen, G.Y., and Wisniewski, H.M. (1985). Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35, 957–961.10.1212/WNL.35.7.957Search in Google Scholar

Wunderlich, M., Martin, A., and Schmid, F.X. (2005). Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions. J. Mol. Biol. 347, 1063–1076.10.1016/j.jmb.2005.02.014Search in Google Scholar PubMed

Zarranz, J.J., Alegre, J., Gomez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173.10.1002/ana.10795Search in Google Scholar PubMed

Zeeb, M., Max, K.E., Weininger, U., Low, C., Sticht, H., and Balbach, J. (2006). Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution. Nucleic Acids Res. 34, 4561–4571.10.1093/nar/gkl376Search in Google Scholar PubMed PubMed Central

Received: 2014-2-5
Accepted: 2014-4-30
Published Online: 2014-7-8
Published in Print: 2014-7-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0115/html
Scroll to top button