Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 395, Issue 7-8


Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation

Sebastian Daum / Daniela Krüger / Annette Meister / Jan Auerswald / Simone Prinz
  • Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John A.G. Briggs
  • Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kirsten Bacia
Published Online: 2014-07-08 | DOI: https://doi.org/10.1515/hsz-2014-0117


As shape transformations of membranes are vital for intracellular trafficking, it is crucial to understand both the mechanics and the biochemistry of these processes. The interplay of these two factors constitutes an experimental challenge, however, because biochemical experiments are not tailored to the investigation of mechanical processes, and biophysical studies using model membranes are not capable of emulating native biological complexity. Reconstituted liposome-based model systems have been widely used for investigating the formation of transport vesicles by the COPII complex that naturally occurs at the endoplasmic reticulum. Here we have revisited these model systems, to address the influence of lipid composition, GTP hydrolyzing conditions and mechanical perturbation on the experimental outcome. We observed that the lipid-dependence of COPII-induced membrane remodeling differs from that predicted based on the lipid-dependence of COPII membrane binding. Under GTP non-hydrolyzing conditions, a structured coat was seen while GTP-hydrolyzing conditions yielded uncoated membranes as well as membranes coated by a thick protein coat of rather unstructured appearance. Detailed up-to-date protocols for purifications of Saccharomyces cerevisiae COPII proteins and for reconstituted reactions using these proteins with giant liposomes are also provided.

Keywords: giant unilamellar vesicle; in vitro reconstitution; intracellular transport; membrane fission; protein-lipid interaction; Sar1


  • Adolf, F., Herrmann, A., Hellwig, A., Beck, R., Brugger, B., and Wieland, F.T. (2013). Scission of COPI and COPII vesicles is independent of GTP hydrolysis. Traffic. 14, 922–932.Web of ScienceGoogle Scholar

  • Akaaboune, M., Grady, R.M., Turney, S., Sanes, J.R., and Lichtman, J.W. (2002). Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands. Neuron. 34, 865–876.Google Scholar

  • Antonny, B., Madden, D., Hamamoto, S., Orci, L., and Schekman, R. (2001). Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 3, 531–537.Google Scholar

  • Bacia, K., Futai, E., Prinz, S., Meister, A., Daum, S., Glatte, D., Briggs, J.A.G., and Schekman, R. (2011). Multibudded tubules formed by COPII on artificial liposomes. Sci. Rep. 1, 17.Web of ScienceGoogle Scholar

  • Barlowe, C. (1995). COPII: a membrane coat that forms endoplasmic reticulum-derived vesicles. FEBS Lett. 369, 93–96.Google Scholar

  • Barlowe, C. (1997). Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J. Cell Biol. 139, 1097–1108.Google Scholar

  • Barlowe, C., d’Enfert, C., and Schekman, R. (1993). Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 268, 873–879.Google Scholar

  • Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M.F., Ravazzola, M., Amherdt, M., and Schekman, R. (1994). COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907.Google Scholar

  • Bashkirov, P.V., Akimov, S.A., Evseev, A.I., Schmid, S.L., Zimmerberg, J., and Frolov, V.A. (2008). GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286.Web of ScienceGoogle Scholar

  • Bi, X., Corpina, R.A., and Goldberg, J. (2002). Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277.Google Scholar

  • Bi, X., Mancias, J.D., and Goldberg, J. (2007). Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell. 13, 635–645.Web of ScienceGoogle Scholar

  • Boucrot, E., Pick, A., Camdere, G., Liska, N., Evergren, E., McMahon, H.T., and Kozlov, M.M. (2012). Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149, 124–136.Web of ScienceGoogle Scholar

  • Brandizzi, F. and Barlowe, C. (2013). Organization of the ER-Golgi interface for membrane traffic control. Nature reviews. Mol. Cell Biol. 14, 382–392.CrossrefGoogle Scholar

  • Bromley, E.H., Kuwada, N.J., Zuckermann, M.J., Donadini, R., Samii, L., Blab, G.A., Gemmen, G.J., Lopez, B.J., Curmi, P.M., Forde, N.R., et al. (2009). The Tumbleweed: towards a synthetic proteinmotor. HFSP J. 3, 204–212.Web of ScienceGoogle Scholar

  • Cai, H., Yu, S., Menon, S., Cai, Y., Lazarova, D., Fu, C., Reinisch, K., Hay, J.C., and Ferro-Novick, S. (2007). TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944.Web of ScienceGoogle Scholar

  • Futai, E., Hamamoto, S., Orci, L., and Schekman, R. (2004). GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes. EMBO J. 23, 4146–4155.Google Scholar

  • Heinze, K.G., Costantino, S., De Koninck, P., and Wiseman, P.W. (2009). Beyond photobleaching, laser illumination unbinds fluorescent proteins. J. Phys. Chem. B 113, 5225–5233.Web of ScienceGoogle Scholar

  • Huang, M., Weissman, J.T., Beraud-Dufour, S., Luan, P., Wang, C., Chen, W., Aridor, M., Wilson, I.A., and Balch, W.E. (2001). Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J. Cell Biol. 155, 937–948.Google Scholar

  • Karatekin, E., Sandre, O., Guitouni, H., Borghi, N., Puech, P.H., and Brochard-Wyart, F. (2003). Cascades of transient pores in giant vesicles: line tension and transport. Biophys. J. 84, 1734–1749.Google Scholar

  • Kim, J., Hamamoto, S., Ravazzola, M., Orci, L., and Schekman, R. (2005). Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles. J. Biol. Chem. 28, 7758–7768.Google Scholar

  • Kuehn, M.J. and Schekman, R. (1997). COPII and secretory cargo capture into transport vesicles. Curr. Opin. Cell Biol. 9, 477–483.CrossrefPubMedGoogle Scholar

  • Lee, M.C., Orci, L., Hamamoto, S., Futai, E., Ravazzola, M., and Schekman, R. (2005). Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617.Google Scholar

  • Liu, A.P. and Fletcher, D.A. (2009). Biology under construction: in vitro reconstitution of cellular function. Nature reviews. Mol. Cell Biol. 10, 644–650.Web of ScienceCrossrefGoogle Scholar

  • Long, K.R., Yamamoto, Y., Baker, A.L., Watkins, S.C., Coyne, C.B., Conway, J.F., and Aridor, M. (2010). Sar1 assembly regulates membrane constriction and ER export. J. Cell Biol. 190, 115–128.Google Scholar

  • Lord, C., Bhandari, D., Menon, S., Ghassemian, M., Nycz, D., Hay, J., Ghosh, P., and Ferro-Novick, S. (2011). Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473, 181–186.Web of ScienceGoogle Scholar

  • Lord, C., Ferro-Novick, S., and Miller, E.A. (2013). The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the Golgi. Cold Spring Harb. Perspect. Biol. 5. pii: a013367.Web of ScienceGoogle Scholar

  • Matsuoka, K. and Schekman, R. (2000). The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods 20, 417–428.Google Scholar

  • Matsuoka, K., Orci, L., Amherdt, M., Bednarek, S.Y., Hamamoto, S., Schekman, R., and Yeung, T. (1998). COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 9, 263–275.Google Scholar

  • Miller, E.A., Beilharz, T.H., Malkus, P.N., Lee, M.C., Hamamoto, S., Orci, L., and Schekman, R. (2003). Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497–509.Google Scholar

  • Neumuller, K.G., Elsayad, K., Reisecker, J.M., Waxham, M.N., and Heinze, K.G. (2010). Photounbinding of calmodulin from a family of CaM binding peptides. PloS one. 5, e14050.Google Scholar

  • Oka, T. and Nakano, A. (1994). Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER-to-Golgi transport in yeast. J. Cell Biol. 124, 425–434.Google Scholar

  • Saito, Y., Kimura, K., Oka, T., and Nakano, A. (1998). Activities of mutant Sar1 proteins in guanine nucleotide binding, GTP hydrolysis, and cell-free transport from the endoplasmic reticulum to the Golgi apparatus. J. Biochem. 124, 816–823.Google Scholar

  • Salama, N.R., Yeung, T., and Schekman, R.W. (1993). The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J. 12, 4073–4082.Google Scholar

  • Salama, N.R., Chuang, J.S., and Schekman, R.W. (1997). Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum. Mol. Biol. Cell 8, 205–217.PubMedGoogle Scholar

  • Sanborn, J., Oglecka, K., Kraut, R.S., and Parikh, A.N. (2013). Transient pearling and vesiculation of membrane tubes under osmotic gradients. Faraday Discuss. 161, 167–176; discussion 273–303.Web of ScienceGoogle Scholar

  • Schwille, P. and Diez, S. (2009). Synthetic biology of minimal systems. Crit. Rev. Chem. Mol Biol. 44, 223–242.Google Scholar

  • Settles, E.I., Loftus, A.F., McKeown, A.N., and Parthasarathy, R. (2010). The vesicle trafficking protein Sar1 lowers lipid membrane rigidity. Biophys. J. 99, 1539–1545.Web of ScienceGoogle Scholar

  • Supek, F., Madden, D.T., Hamamoto, S., Orci, L., and Schekman, R. (2002). Sec16p potentiates the action of COPII proteins to bud transport vesicles. J. Cell Biol. 158, 1029–1038.Google Scholar

  • Venditti, R., Wilson, C., and De Matteis, M.A. (2014). Exiting the ER: what we know and what we don’t. Trends Cell Biol. 24, 9–18.Web of ScienceCrossrefGoogle Scholar

  • Vetter, I.R. and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304.Google Scholar

  • Yamanushi, T., Hirata, A., Oka, T., and Nakano, A. (1996). Characterization of yeast sar1 temperature-sensitive mutants, which are defective in protein transport from the endoplasmic reticulum. J Biochem. 120, 452–458.Google Scholar

  • Zanetti, G., Pahuja, K.B., Studer, S., Shim, S., and Schekman, R. (2012). COPII and the regulation of protein sorting in mammals. Nat. Cell Biol. 14, 20–28.Google Scholar

  • Zanetti, G., Prinz, S., Daum, S., Meister, A., Schekman, R., Bacia, K., and Briggs, J.A. (2013). The structure of the COPII transport-vesicle coat assembled on membranes. eLife 2, e00951.Google Scholar

  • Zhu, T.F., Adamala, K., Zhang, N., and Szostak, J.W. (2012). Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc. Nat. Acad. Sci. USA 109, 9828–9832.Google Scholar

About the article

Corresponding author: Kirsten Bacia, HALOmem, University of Halle, Kurt-Mothes-Strasse 3, 06120 Halle, Germany, e-mail:

Received: 2014-02-05

Accepted: 2014-06-12

Published Online: 2014-07-08

Published in Print: 2014-07-01

Citation Information: Biological Chemistry, Volume 395, Issue 7-8, Pages 801–812, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0117.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alejandro Melero, Nicolas Chiaruttini, Takefumi Karashima, Isabelle Riezman, Kouichi Funato, Charles Barlowe, Howard Riezman, and Aurélien Roux
Current Biology, 2018
Christian Schwieger, Annette Meister, Sebastian Daum, Alfred Blume, and Kirsten Bacia
Polymers, 2017, Volume 9, Number 11, Page 612
Daniela Krüger, Jan Ebenhan, Stefan Werner, and Kirsten Bacia
Biophysical Journal, 2017
Michael G. Hanna, Ioanna Mela, Lei Wang, Robert M. Henderson, Edwin R. Chapman, J. Michael Edwardson, and Anjon Audhya
Journal of Biological Chemistry, 2016, Volume 291, Number 3, Page 1014
Hanaa Hariri, Nilakshee Bhattacharya, Kerri Johnson, Alex J. Noble, and Scott M. Stagg
Journal of Molecular Biology, 2014, Volume 426, Number 22, Page 3811

Comments (0)

Please log in or register to comment.
Log in